-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathh2rbox_v2-le90_r50_fpn-1x_dotav2.py
116 lines (111 loc) · 3.68 KB
/
h2rbox_v2-le90_r50_fpn-1x_dotav2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
_base_ = [
'../_base_/datasets/dotav2.py', '../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
angle_version = 'le90'
# model settings
model = dict(
type='H2RBoxV2Detector',
crop_size=(1024, 1024),
view_range=(0.25, 0.75),
data_preprocessor=dict(
type='mmdet.DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32,
boxtype2tensor=False),
backbone=dict(
type='mmdet.ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='mmdet.FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='H2RBoxV2Head',
num_classes=18,
in_channels=256,
angle_version='le90',
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
center_sampling=True,
center_sample_radius=1.5,
norm_on_bbox=True,
centerness_on_reg=True,
use_hbbox_loss=False,
scale_angle=False,
rotation_agnostic_classes=[1, 9, 11, 16, 17],
agnostic_resize_classes=[1],
use_circumiou_loss=True,
use_standalone_angle=True,
use_reweighted_loss_bbox=False,
angle_coder=dict(
type='PSCCoder',
angle_version=angle_version,
dual_freq=False,
num_step=3,
thr_mod=0),
bbox_coder=dict(
type='DistanceAnglePointCoder', angle_version=angle_version),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='mmdet.IoULoss', loss_weight=1.0),
loss_centerness=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_symmetry_ss=dict(
type='H2RBoxV2ConsistencyLoss',
use_snap_loss=True,
loss_rot=dict(
type='mmdet.SmoothL1Loss', loss_weight=1.0, beta=0.1),
loss_flp=dict(
type='mmdet.SmoothL1Loss', loss_weight=0.05, beta=0.1))),
# training and testing settings
train_cfg=None,
test_cfg=dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms_rotated', iou_threshold=0.1),
max_per_img=2000))
# load hbox annotations
train_pipeline = [
dict(type='mmdet.LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
# Horizontal GTBox, (x1,y1,x2,y2)
dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='hbox')),
# Horizontal GTBox, (x,y,w,h,theta)
dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')),
dict(type='mmdet.Resize', scale=(1024, 1024), keep_ratio=True),
dict(
type='mmdet.RandomFlip',
prob=0.75,
direction=['horizontal', 'vertical', 'diagonal']),
dict(type='mmdet.PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
# optimizer
optim_wrapper = dict(
optimizer=dict(
_delete_=True,
type='AdamW',
lr=0.00005,
betas=(0.9, 0.999),
weight_decay=0.05))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=6)