forked from erikbern/ann-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
109 lines (100 loc) · 4 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import argparse
from ann_benchmarks.datasets import get_dataset
from ann_benchmarks.algorithms.definitions import get_definitions, get_unique_algorithms
from ann_benchmarks.plotting.metrics import all_metrics as metrics
from ann_benchmarks.plotting.utils import get_plot_label, compute_metrics, create_linestyles, create_pointset
from ann_benchmarks.results import store_results, load_results
def create_plot(all_data, raw, x_log, y_log, xn, yn, fn_out, linestyles):
xm, ym = (metrics[xn], metrics[yn])
# Now generate each plot
handles = []
labels = []
plt.figure(figsize=(12, 9))
for algo in sorted(all_data.keys(), key=lambda x: x.lower()):
xs, ys, ls, axs, ays, als = create_pointset(all_data[algo], xn, yn)
color, faded, linestyle, marker = linestyles[algo]
handle, = plt.plot(xs, ys, '-', label=algo, color=color, ms=7, mew=3, lw=3, linestyle=linestyle, marker=marker)
handles.append(handle)
if raw:
handle2, = plt.plot(axs, ays, '-', label=algo, color=faded, ms=5, mew=2, lw=2, linestyle=linestyle, marker=marker)
labels.append(algo)
if x_log:
plt.gca().set_xscale('log')
if y_log:
plt.gca().set_yscale('log')
plt.gca().set_title(get_plot_label(xm, ym))
plt.gca().set_ylabel(ym['description'])
plt.gca().set_xlabel(xm['description'])
box = plt.gca().get_position()
# plt.gca().set_position([box.x0, box.y0, box.width * 0.8, box.height])
plt.gca().legend(handles, labels, loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': 9})
plt.grid(b=True, which='major', color='0.65',linestyle='-')
if 'lim' in xm:
plt.xlim(xm['lim'])
if 'lim' in ym:
plt.ylim(ym['lim'])
plt.savefig(fn_out, bbox_inches='tight')
plt.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset',
metavar="DATASET",
default='glove-100-angular')
parser.add_argument(
'--count',
default=10)
parser.add_argument(
'--definitions',
metavar='FILE',
help='load algorithm definitions from FILE',
default='algos.yaml')
parser.add_argument(
'--limit',
default=-1)
parser.add_argument(
'-o', '--output')
parser.add_argument(
'-x', '--x-axis',
help = 'Which metric to use on the X-axis',
choices = metrics.keys(),
default = "k-nn")
parser.add_argument(
'-y', '--y-axis',
help = 'Which metric to use on the Y-axis',
choices = metrics.keys(),
default = "qps")
parser.add_argument(
'-X', '--x-log',
help='Draw the X-axis using a logarithmic scale',
action='store_true')
parser.add_argument(
'-Y', '--y-log',
help='Draw the Y-axis using a logarithmic scale',
action='store_true')
parser.add_argument(
'--raw',
help='Show raw results (not just Pareto frontier) in faded colours',
action='store_true')
args = parser.parse_args()
if not args.output:
args.output = 'results/%s.png' % args.dataset
print('writing output to %s' % args.output)
dataset = get_dataset(args.dataset)
dimension = len(dataset['train'][0]) # TODO(erikbern): ugly
point_type = 'float' # TODO(erikbern): should look at the type of X_train
distance = dataset.attrs['distance']
count = int(args.count)
definitions = get_definitions(args.definitions, dimension, point_type, distance, count)
unique_algorithms = get_unique_algorithms(args.definitions)
linestyles = create_linestyles(unique_algorithms)
results = load_results(args.dataset, count, definitions)
runs = compute_metrics(list(dataset["distances"]), results, args.x_axis, args.y_axis)
if not runs:
raise Exception('Nothing to plot')
create_plot(runs, args.raw, args.x_log,
args.y_log, args.x_axis, args.y_axis, args.output, linestyles)