-
Notifications
You must be signed in to change notification settings - Fork 0
/
main2.py
835 lines (698 loc) · 32.6 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
import cv2
import time
import tqdm
import numpy as np
import dearpygui.dearpygui as dpg
import torch
import torch.nn.functional as F
import trimesh
import rembg
import common.global_constant
from cam_utils import orbit_camera, OrbitCamera
from mesh_renderer import Renderer
# from kiui.lpips import LPIPS
class GUI:
def __init__(self, opt):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.gui = opt.gui # enable gui
self.W = opt.W
self.H = opt.H
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
self.fixed_cam = None
self.fixed_cam_list = []
self.mode = "image"
self.seed = "random"
# only for gui
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # update buffer_image
# models
self.device = torch.device(common.global_constant.GPU.DEVICE)
self.bg_remover = None
self.guidance_sd = None
self.guidance_zero123 = None
self.enable_sd = False
self.enable_zero123 = False
# renderer NN Module
self.renderer = Renderer(opt).to(self.device)
# input image
self.input_img = None
self.input_mask = None
self.input_img_torch = None
self.input_mask_torch = None
# {{ only for GUI
self.overlay_input_img = False
self.overlay_input_img_ratio = 0.5
# }}
self.input_img_list = []
self.input_mask_list = []
self.input_img_torch_list = []
self.input_mask_torch_list = []
self.input_img_torch_channel_last_list = []
# input text
self.prompt = ""
self.negative_prompt = ""
self.prompt_list = []
self.negative_prompt_list = []
# training stuff
self.training = False
self.optimizer = None
self.step = 0
self.train_steps = 1 # steps per rendering loop
# self.lpips_loss = LPIPS(net='vgg').to(self.device)
# load input data from cmdline
if self.opt.input is not None:
self.load_input(self.opt.input)
if self.opt.input_files is not None:
input_files = self.opt.input_files.split(',')
self.load_input_files(input_files)
else:
if self.input_img is not None:
self.input_img_list.append(self.input_img)
self.input_mask_list.append(self.input_mask)
# print(self.input_img, self.input_mask)
# print(self.input_img_list, self.input_mask_list, self.prompt_list)
# override prompt from cmdline
if self.opt.prompt is not None:
self.prompt = self.opt.prompt
if self.opt.negative_prompt is not None:
self.negative_prompt = self.opt.negative_prompt
print('prompt:', self.prompt, '; negative_prompt:', self.negative_prompt)
# exit(0)
if self.gui:
dpg.create_context()
self.register_dpg()
self.test_step()
def __del__(self):
if self.gui:
dpg.destroy_context()
def seed_everything(self):
try:
seed = int(self.seed)
except:
seed = np.random.randint(0, 1000000)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
self.last_seed = seed
def prepare_train(self):
self.step = 0
# setup training
self.optimizer = torch.optim.Adam(self.renderer.get_params())
# default camera
if self.opt.mvdream or self.opt.imagedream:
# the second view is the front view for mvdream/imagedream.
pose = orbit_camera(self.opt.elevation, 90, self.opt.radius)
else:
pose = orbit_camera(self.opt.elevation, 0, self.opt.radius)
self.fixed_cam = (pose, self.cam.perspective)
# TODO: self.fixed_cam_list
if self.opt.input_camera_pose is not None:
input_camera_poses = self.opt.input_camera_pose.split(',')
for pose in input_camera_poses:
pose = float(pose)
print('pose: %s' % pose)
if self.opt.mvdream or self.opt.imagedream:
# the second view is the front view for mvdream/imagedream.
pose = orbit_camera(self.opt.elevation, 90 + pose, self.opt.radius)
else:
pose = orbit_camera(self.opt.elevation, pose, self.opt.radius)
self.fixed_cam_list.append((pose, self.cam.perspective))
else:
self.fixed_cam_list.append(self.fixed_cam)
self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
self.enable_zero123 = self.opt.lambda_zero123 > 0 and (
self.input_img is not None or len(self.input_img_list) > 0)
# lazy load guidance model
if self.guidance_sd is None and self.enable_sd:
if self.opt.mvdream:
print(f"[INFO] loading MVDream...")
from guidance.mvdream_utils import MVDream
self.guidance_sd = MVDream(self.device)
print(f"[INFO] loaded MVDream!")
elif self.opt.imagedream:
print(f"[INFO] loading ImageDream...")
from guidance.imagedream_utils import ImageDream
self.guidance_sd = ImageDream(self.device)
print(f"[INFO] loaded ImageDream!")
else:
print(f"[INFO] loading SD...")
from guidance.sd_utils import StableDiffusion
self.guidance_sd = StableDiffusion(self.device)
print(f"[INFO] loaded SD!")
if self.guidance_zero123 is None and self.enable_zero123:
print(f"[INFO] loading zero123...")
model_key = None
from guidance.zero123_utils import Zero123
if self.opt.stable_zero123:
model_key = 'ashawkey/stable-zero123-diffusers'
self.guidance_zero123 = Zero123(self.device, model_key=model_key)
else:
model_key = 'ashawkey/zero123-xl-diffusers'
self.guidance_zero123 = Zero123(self.device, model_key=model_key)
print(f"[INFO] loaded zero123!", model_key)
# input image
'''
if self.input_img is not None:
self.input_img_torch = torch.from_numpy(self.input_img).permute(2, 0, 1).unsqueeze(0).to(self.device)
self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size),
mode="bilinear", align_corners=False)
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device)
self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size),
mode="bilinear", align_corners=False)
self.input_img_torch_channel_last = self.input_img_torch[0].permute(1, 2, 0).contiguous()
'''
# TODO: self.input_img_torch_list input_mask_torch_list
print('input_img_list:', len(self.input_img_list))
for img_idx in range(len(self.input_img_list)):
input_img_torch = torch.from_numpy(self.input_img_list[img_idx]).permute(2, 0, 1).unsqueeze(0).to(self.device)
input_img_torch = F.interpolate(input_img_torch, (self.opt.ref_size, self.opt.ref_size),
mode="bilinear", align_corners=False)
self.input_img_torch_list.append(input_img_torch)
input_mask_torch = torch.from_numpy(self.input_mask_list[img_idx]).permute(2, 0, 1).unsqueeze(0).to(self.device)
input_mask_torch = F.interpolate(input_mask_torch, (self.opt.ref_size, self.opt.ref_size),
mode="bilinear", align_corners=False)
self.input_mask_torch_list.append(input_mask_torch)
self.input_img_torch_channel_last_list.append(input_img_torch[0].permute(1, 2, 0).contiguous())
# prepare embeddings
with torch.no_grad():
# TODO: self.input_img_torch_list just use first image calc embedding because utils train_step not handle multi
# prompts negative_prompts support multi?but encode_text in utils not support?
# support multi image embedding in future? necessary?
input_img_torch = self.input_img_torch_list[0] if (len(self.input_img_torch_list) > 0) else None
if self.enable_sd:
if self.opt.imagedream: # NOTICE: mvdream only use text input, imagedream both?
self.guidance_sd.get_image_text_embeds(input_img_torch, [self.prompt], [self.negative_prompt])
else: # only use text input
self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])
if self.enable_zero123: # only use image input
self.guidance_zero123.get_img_embeds(input_img_torch)
def train_step(self):
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
starter.record()
for step in range(self.train_steps): # 1??
print('step:', step)
self.step += 1
step_ratio = min(1, self.step / self.opt.iters_refine)
loss = 0
### known view has ground truth
if not self.opt.imagedream: # NOTICE: imagedream not use as ground truth?
print('known view ground truth loss...')
for idx_image in range(len(self.input_img_torch_list)):
# TODO: set cur_cam
#cur_cam = self.fixed_cam
cur_cam = self.fixed_cam_list[idx_image]
ssaa = min(2.0, max(0.125, 2 * np.random.random()))
out = self.renderer.render(*cur_cam, self.opt.ref_size, self.opt.ref_size, ssaa=ssaa)
# rgb loss
image = out["image"] # [H, W, 3] in [0, 1]
valid_mask = ((out["alpha"] > 0) & (out["viewcos"] > 0.5)).detach()
mse_loss_rgb = F.mse_loss(image * valid_mask, self.input_img_torch_channel_last_list[idx_image] * valid_mask)
print('mse_loss_rgb:', mse_loss_rgb)
loss = loss + mse_loss_rgb
### novel view (manual batch) no ground truth so use guidance loss
print('novel view guidance loss...')
render_resolution = 512
images = []
poses = []
vers, hors, radii = [], [], []
# avoid too large elevation (> 80 or < -80), and make sure it always cover [min_ver, max_ver]
min_ver = max(min(self.opt.min_ver, self.opt.min_ver - self.opt.elevation), -80 - self.opt.elevation)
max_ver = min(max(self.opt.max_ver, self.opt.max_ver - self.opt.elevation), 80 - self.opt.elevation)
print('batch_size:', self.opt.batch_size)
for batch_i in range(self.opt.batch_size):
print('batch_i:', batch_i)
# render random view
ver = np.random.randint(min_ver, max_ver)
hor = np.random.randint(-180, 180)
radius = 0
vers.append(ver)
hors.append(hor)
radii.append(radius)
pose = orbit_camera(self.opt.elevation + ver, hor, self.opt.radius + radius)
# print('pose:', pose.shape)
# print('pose after orbit_camera', pose)
poses.append(pose)
# random render resolution
ssaa = min(2.0, max(0.125, 2 * np.random.random()))
print('render ...', batch_i)
out = self.renderer.render(pose, self.cam.perspective, render_resolution, render_resolution, ssaa=ssaa)
print('render finish!', batch_i)
image = out["image"] # [H, W, 3] in [0, 1]
image = image.permute(2, 0, 1).contiguous().unsqueeze(0) # [1, 3, H, W] in [0, 1]
images.append(image)
# enable mvdream training
if self.opt.mvdream or self.opt.imagedream: # other views: rotate horizontally based random view
print('mvdream or imagedream...')
for view_i in range(1, 4): # 3 views each rotate 90deg
pose_i = orbit_camera(self.opt.elevation + ver, hor + 90 * view_i, self.opt.radius + radius)
print('pose_i:', pose_i.shape)
poses.append(pose_i)
out_i = self.renderer.render(pose_i, self.cam.perspective, render_resolution, render_resolution,
ssaa=ssaa)
image = out_i["image"].permute(2, 0, 1).contiguous().unsqueeze(0) # [1, 3, H, W] in [0, 1]
images.append(image)
images = torch.cat(images, dim=0)
poses = torch.from_numpy(np.stack(poses, axis=0)).to(self.device)
# import kiui
# kiui.lo(hor, ver)
# kiui.vis.plot_image(image)
# guidance loss
print('guidance loss start')
# TODO:
# all has embeddings which inited in prepare_train should handle multi images or texts
# mvdream:text imagedream image&text sd:text zero123:image
# only zero123 has cam_embeddings for novel views
strength = step_ratio * 0.15 + 0.8
if self.enable_sd:
print('guidance_sd.train_step...')
if self.opt.mvdream or self.opt.imagedream:
# loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, poses, step_ratio)
refined_images = self.guidance_sd.refine(images, poses, strength=strength).float()
refined_images = F.interpolate(refined_images, (render_resolution, render_resolution),
mode="bilinear", align_corners=False)
loss = loss + self.opt.lambda_sd * F.mse_loss(images, refined_images)
else:
# loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, step_ratio)
refined_images = self.guidance_sd.refine(images, strength=strength).float()
refined_images = F.interpolate(refined_images, (render_resolution, render_resolution),
mode="bilinear", align_corners=False)
sd_loss = F.mse_loss(images, refined_images)
print('sd_loss:', sd_loss)
loss = loss + self.opt.lambda_sd * sd_loss
print('guidance_sd.train_step finish!')
if self.enable_zero123:
print('guidance_zero123.train_step ...')
# loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.train_step(images, vers, hors, radii, step_ratio)
refined_images = self.guidance_zero123.refine(images, vers, hors, radii, strength=strength,
default_elevation=self.opt.elevation).float()
refined_images = F.interpolate(refined_images, (render_resolution, render_resolution), mode="bilinear",
align_corners=False)
sd_loss = F.mse_loss(images, refined_images)
print('sd_loss:', sd_loss)
loss = loss + self.opt.lambda_zero123 * sd_loss
# loss = loss + self.opt.lambda_zero123 * self.lpips_loss(images, refined_images)
print('guidance_zero123.train_step finish!')
# optimize step
print('optimize step ...')
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
print('optimize step finish!')
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.need_update = True
if self.gui:
dpg.set_value("_log_train_time", f"{t:.4f}ms")
dpg.set_value(
"_log_train_log",
f"step = {self.step: 5d} (+{self.train_steps: 2d}) loss = {loss.item():.4f}",
)
# dynamic train steps (no need for now)
# max allowed train time per-frame is 500 ms
# full_t = t / self.train_steps * 16
# train_steps = min(16, max(4, int(16 * 500 / full_t)))
# if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8:
# self.train_steps = train_steps
@torch.no_grad()
def test_step(self):
# ignore if no need to update
if not self.need_update:
return
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
starter.record()
# should update image
if self.need_update:
# render image
out = self.renderer.render(self.cam.pose, self.cam.perspective, self.H, self.W)
buffer_image = out[self.mode] # [H, W, 3]
if self.mode in ['depth', 'alpha']:
buffer_image = buffer_image.repeat(1, 1, 3)
if self.mode == 'depth':
buffer_image = (buffer_image - buffer_image.min()) / (
buffer_image.max() - buffer_image.min() + 1e-20)
self.buffer_image = buffer_image.contiguous().clamp(0, 1).detach().cpu().numpy()
# display input_image
if self.overlay_input_img and self.input_img is not None:
self.buffer_image = (
self.buffer_image * (1 - self.overlay_input_img_ratio)
+ self.input_img * self.overlay_input_img_ratio
)
self.need_update = False
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
if self.gui:
dpg.set_value("_log_infer_time", f"{t:.4f}ms ({int(1000 / t)} FPS)")
dpg.set_value(
"_texture", self.buffer_image
) # buffer must be contiguous, else seg fault!
def load_input(self, file):
print('file:', file)
self.input_img, self.input_mask = self.load_image(file)
# print(self.input_img, self.input_mask)
# exit(0)
self.prompt = self.load_prompt(file)
print('prompt:', self.prompt)
def load_input_files(self, files):
for file in files:
print('file:', file)
input_img, input_mask = self.load_image(file)
self.input_img_list.append(input_img)
self.input_mask_list.append(input_mask)
prompt = self.load_prompt(file)
print('prompt:', prompt)
self.prompt_list.append(prompt)
def load_image(self, file):
# load image
print(f'[INFO] load image from {file} ...')
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
print('img shape:', img.shape)
if img.shape[-1] == 3:
if self.bg_remover is None:
self.bg_remover = rembg.new_session()
img = rembg.remove(img, session=self.bg_remover)
img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
input_mask = img[..., 3:]
# white bg
input_img = img[..., :3] * input_mask + (1 - input_mask)
# bgr to rgb
input_img = input_img[..., ::-1].copy()
return input_img, input_mask
def load_prompt(self, file):
# load prompt
prompt = ""
file_prompt = file.replace("_rgba.png", "_caption.txt")
if os.path.exists(file_prompt):
print(f'[INFO] load prompt from {file_prompt}...')
with open(file_prompt, "r") as f:
prompt = f.read().strip()
return prompt
def save_model(self):
os.makedirs(self.opt.outdir, exist_ok=True)
path = os.path.join(self.opt.outdir, self.opt.save_path + '.' + self.opt.mesh_format)
self.renderer.export_mesh(path)
print(f"[INFO] save model to {path} .")
def register_dpg(self):
### register texture
with dpg.texture_registry(show=False):
dpg.add_raw_texture(
self.W,
self.H,
self.buffer_image,
format=dpg.mvFormat_Float_rgb,
tag="_texture",
)
### register window
# the rendered image, as the primary window
with dpg.window(
tag="_primary_window",
width=self.W,
height=self.H,
pos=[0, 0],
no_move=True,
no_title_bar=True,
no_scrollbar=True,
):
# add the texture
dpg.add_image("_texture")
# dpg.set_primary_window("_primary_window", True)
# control window
with dpg.window(
label="Control",
tag="_control_window",
width=600,
height=self.H,
pos=[self.W, 0],
no_move=True,
no_title_bar=True,
):
# button theme
with dpg.theme() as theme_button:
with dpg.theme_component(dpg.mvButton):
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)
# timer stuff
with dpg.group(horizontal=True):
dpg.add_text("Infer time: ")
dpg.add_text("no data", tag="_log_infer_time")
def callback_setattr(sender, app_data, user_data):
setattr(self, user_data, app_data)
# init stuff
with dpg.collapsing_header(label="Initialize", default_open=True):
# seed stuff
def callback_set_seed(sender, app_data):
self.seed = app_data
self.seed_everything()
dpg.add_input_text(
label="seed",
default_value=self.seed,
on_enter=True,
callback=callback_set_seed,
)
# input stuff
def callback_select_input(sender, app_data):
# only one item
for k, v in app_data["selections"].items():
dpg.set_value("_log_input", k)
self.load_input(v)
self.need_update = True
with dpg.file_dialog(
directory_selector=False,
show=False,
callback=callback_select_input,
file_count=1,
tag="file_dialog_tag",
width=700,
height=400,
):
dpg.add_file_extension("Images{.jpg,.jpeg,.png}")
with dpg.group(horizontal=True):
dpg.add_button(
label="input",
callback=lambda: dpg.show_item("file_dialog_tag"),
)
dpg.add_text("", tag="_log_input")
# overlay stuff
with dpg.group(horizontal=True):
def callback_toggle_overlay_input_img(sender, app_data):
self.overlay_input_img = not self.overlay_input_img
self.need_update = True
dpg.add_checkbox(
label="overlay image",
default_value=self.overlay_input_img,
callback=callback_toggle_overlay_input_img,
)
def callback_set_overlay_input_img_ratio(sender, app_data):
self.overlay_input_img_ratio = app_data
self.need_update = True
dpg.add_slider_float(
label="ratio",
min_value=0,
max_value=1,
format="%.1f",
default_value=self.overlay_input_img_ratio,
callback=callback_set_overlay_input_img_ratio,
)
# prompt stuff
dpg.add_input_text(
label="prompt",
default_value=self.prompt,
callback=callback_setattr,
user_data="prompt",
)
dpg.add_input_text(
label="negative",
default_value=self.negative_prompt,
callback=callback_setattr,
user_data="negative_prompt",
)
# save current model
with dpg.group(horizontal=True):
dpg.add_text("Save: ")
dpg.add_button(
label="model",
tag="_button_save_model",
callback=self.save_model,
)
dpg.bind_item_theme("_button_save_model", theme_button)
dpg.add_input_text(
label="",
default_value=self.opt.save_path,
callback=callback_setattr,
user_data="save_path",
)
# training stuff
with dpg.collapsing_header(label="Train", default_open=True):
# lr and train button
with dpg.group(horizontal=True):
dpg.add_text("Train: ")
def callback_train(sender, app_data):
if self.training:
self.training = False
dpg.configure_item("_button_train", label="start")
else:
self.prepare_train()
self.training = True
dpg.configure_item("_button_train", label="stop")
# dpg.add_button(
# label="init", tag="_button_init", callback=self.prepare_train
# )
# dpg.bind_item_theme("_button_init", theme_button)
dpg.add_button(
label="start", tag="_button_train", callback=callback_train
)
dpg.bind_item_theme("_button_train", theme_button)
with dpg.group(horizontal=True):
dpg.add_text("", tag="_log_train_time")
dpg.add_text("", tag="_log_train_log")
# rendering options
with dpg.collapsing_header(label="Rendering", default_open=True):
# mode combo
def callback_change_mode(sender, app_data):
self.mode = app_data
self.need_update = True
dpg.add_combo(
("image", "depth", "alpha", "normal"),
label="mode",
default_value=self.mode,
callback=callback_change_mode,
)
# fov slider
def callback_set_fovy(sender, app_data):
self.cam.fovy = np.deg2rad(app_data)
self.need_update = True
dpg.add_slider_int(
label="FoV (vertical)",
min_value=1,
max_value=120,
format="%d deg",
default_value=np.rad2deg(self.cam.fovy),
callback=callback_set_fovy,
)
### register camera handler
def callback_camera_drag_rotate_or_draw_mask(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.orbit(dx, dy)
self.need_update = True
def callback_camera_wheel_scale(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
delta = app_data
self.cam.scale(delta)
self.need_update = True
def callback_camera_drag_pan(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.pan(dx, dy)
self.need_update = True
def callback_set_mouse_loc(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
# just the pixel coordinate in image
self.mouse_loc = np.array(app_data)
with dpg.handler_registry():
# for camera moving
dpg.add_mouse_drag_handler(
button=dpg.mvMouseButton_Left,
callback=callback_camera_drag_rotate_or_draw_mask,
)
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
dpg.add_mouse_drag_handler(
button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan
)
dpg.create_viewport(
title="Gaussian3D",
width=self.W + 600,
height=self.H + (45 if os.name == "nt" else 0),
resizable=False,
)
### global theme
with dpg.theme() as theme_no_padding:
with dpg.theme_component(dpg.mvAll):
# set all padding to 0 to avoid scroll bar
dpg.add_theme_style(
dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.add_theme_style(
dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.add_theme_style(
dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core
)
dpg.bind_item_theme("_primary_window", theme_no_padding)
dpg.setup_dearpygui()
### register a larger font
# get it from: https://github.com/lxgw/LxgwWenKai/releases/download/v1.300/LXGWWenKai-Regular.ttf
if os.path.exists("LXGWWenKai-Regular.ttf"):
with dpg.font_registry():
with dpg.font("LXGWWenKai-Regular.ttf", 18) as default_font:
dpg.bind_font(default_font)
# dpg.show_metrics()
dpg.show_viewport()
def render(self):
assert self.gui
while dpg.is_dearpygui_running():
# update texture every frame
if self.training:
print('train_step ...')
self.train_step()
print('train_step finish!')
print('test_step ...')
self.test_step()
print('test_step finish!')
dpg.render_dearpygui_frame()
print('render_dearpygui_frame finish!')
# no gui mode
def train(self, iters=500):
if iters > 0:
print('prepare_train ...')
self.prepare_train()
print('prepare_train finish!')
for i in tqdm.trange(iters):
self.train_step()
print('train_steps finish!iters:', iters)
# save
print('save_model model ...')
self.save_model()
print('save_model model finish!')
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="path to the yaml config file")
args, extras = parser.parse_known_args()
# print('args:', args, 'extras:', extras)
# exit(0)
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
# auto find mesh from stage 1
if opt.mesh is None:
default_path = os.path.join(opt.outdir, opt.save_path + '_mesh.' + opt.mesh_format)
if os.path.exists(default_path):
opt.mesh = default_path
else:
raise ValueError(f"Cannot find mesh from {default_path}, must specify --mesh explicitly!")
gui = GUI(opt)
if opt.gui:
print('gui render')
gui.render()
else:
print('gui train')
gui.train(opt.iters_refine)