forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_housing.js
176 lines (161 loc) · 6.2 KB
/
data_housing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
const HOUSING_CSV_URL = 'https://storage.googleapis.com/learnjs-data/csv-datasets/california_housing_train_10k.csv';
export const featureColumns = [
'longitude', 'latitude', 'housing_median_age', 'total_rooms',
'total_bedrooms', 'population', 'households', 'median_income'];
const labelColumn = 'median_house_value';
/**
* Calculate the column-by-column statistics of the housing CSV dataset.
*
* @return An object consisting of the following fields:
* count {number} Number of data rows.
* featureMeans {number[]} Each element is the arithmetic mean over all values
* in a column. Ordered by the feature columns in the CSV dataset.
* featureStddevs {number[]} Each element is the standard deviation over all
* values in a column. Ordered by the columsn in the in the CSV dataset.
* labelMean {number} The arithmetic mean of the label column.
* labeStddev {number} The standard deviation of the albel column.
*/
export async function getDatasetStats() {
const featureValues = {};
featureColumns.forEach(feature => {
featureValues[feature] = [];
});
const labelValues = [];
const dataset = tf.data.csv(HOUSING_CSV_URL, {
columnConfigs: {
[labelColumn]: {
isLabel: true
}
}
});
const iterator = await dataset.iterator();
let count = 0;
while (true) {
const item = await iterator.next();
if (item.done) {
break;
}
featureColumns.forEach(feature => {
if (item.value.xs[feature] == null) {
throw new Error(`item #{count} lacks feature ${feature}`);
}
featureValues[feature].push(item.value.xs[feature]);
});
labelValues.push(item.value.ys[labelColumn]);
count++;
}
return tf.tidy(() => {
const featureMeans = {};
const featureStddevs = {};
featureColumns.forEach(feature => {
const {mean, variance} = tf.moments(featureValues[feature]);
featureMeans[feature] = mean.arraySync();
featureStddevs[feature] = tf.sqrt(variance).arraySync();
});
const moments = tf.moments(labelValues);
const labelMean = moments.mean.arraySync();
const labelStddev = tf.sqrt(moments.variance).arraySync();
return {
count,
featureMeans,
featureStddevs,
labelMean,
labelStddev
};
});
}
/**
* Get a dataset with the features and label z-normalized,
* the dataset is split into three xs-ys tensor pairs: for training,
* validation and evaluation.
*
* @param {number} count Number of rows in the CSV dataset, computed beforehand.
* @param {{[feature: string]: number}} featureMeans Arithmetic means of the
* features. Use for normalization.
* @param {[feature: string]: number} featureStddevs Standard deviations of the
* features. Used for normalization.
* @param {number} labelMean Arithmetic mean of the label. Used for
* normalization.
* @param {number} labelStddev Standard deviation of the label. Used for
* normalization.
* @param {number} validationSplit Validation spilt, must be >0 and <1.
* @param {number} evaluationSplit Evaluation split, must be >0 and <1.
* @returns An object consisting of the following keys:
* trainXs {tf.Tensor} training feature tensor
* trainYs {tf.Tensor} training label tensor
* valXs {tf.Tensor} validation feature tensor
* valYs {tf.Tensor} validation label tensor
* evalXs {tf.Tensor} evaluation feature tensor
* evalYs {tf.Tensor} evaluation label tensor.
*/
export async function getNormalizedDatasets(
count, featureMeans, featureStddevs, labelMean, labelStddev,
validationSplit, evaluationSplit) {
tf.util.assert(
validationSplit > 0 && validationSplit < 1,
() => `validationSplit is expected to be >0 and <1, ` +
`but got ${validationSplit}`);
tf.util.assert(
evaluationSplit > 0 && evaluationSplit < 1,
() => `evaluationSplit is expected to be >0 and <1, ` +
`but got ${evaluationSplit}`);
tf.util.assert(
validationSplit + evaluationSplit < 1,
() => `The sum of validationSplit and evaluationSplit exceeds 1`);
const dataset = tf.data.csv(HOUSING_CSV_URL, {
columnConfigs: {
[labelColumn]: {
isLabel: true
}
}
});
const featureValues = [];
const labelValues = [];
const indices = [];
const iterator = await dataset.iterator();
for (let i = 0; i < count; ++i) {
const {value, done} = await iterator.next();
if (done) {
break;
}
featureColumns.map(feature => {
featureValues.push(
(value.xs[feature] - featureMeans[feature]) /
featureStddevs[feature]);
});
labelValues.push((value.ys[labelColumn] - labelMean) / labelStddev);
indices.push(i);
}
const xs = tf.tensor2d(featureValues, [count, featureColumns.length]);
const ys = tf.tensor2d(labelValues, [count, 1]);
// Set random seed to fix shuffling order and therefore to fix the
// training, validation, and evaluation splits.
Math.seedrandom('1337');
tf.util.shuffle(indices);
const numTrain = Math.round(count * (1 - validationSplit - evaluationSplit));
const numVal = Math.round(count * validationSplit);
const trainXs = xs.gather(indices.slice(0, numTrain));
const trainYs = ys.gather(indices.slice(0, numTrain));
const valXs = xs.gather(indices.slice(numTrain, numTrain + numVal));
const valYs = ys.gather(indices.slice(numTrain, numTrain + numVal));
const evalXs = xs.gather(indices.slice(numTrain + numVal));
const evalYs = ys.gather(indices.slice(numTrain + numVal));
return {trainXs, trainYs, valXs, valYs, evalXs, evalYs};
}