forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.js
195 lines (171 loc) · 6.45 KB
/
train.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const path = require('path');
const _ = require('lodash');
const mkdirp = require('mkdirp');
const argparse = require('argparse');
// The tf module will be dynamically set depending on whether the `--gpu`
// flag is specified.
let tf;
import('./data.js').then(exports => {
const {DATASET_PATH, TRAIN_IMAGES_FILE, IMAGE_FLAT_SIZE, loadImages, previewImage, batchImages,} = exports; const {encoder, decoder, vae, vaeLoss} = require('./model');
let epochs; let batchSize;
const INTERMEDIATE_DIM = 512; const LATENT_DIM = 2;
/**
* Train the auto encoder
*
* @param {number[][]} images Flattened images for VAE training.
* @param {object} vaeOpts Options for the VAE model, including the following
* fields:
* - originaDim {number} Length of the input flattened image.
* - intermediateDim {number} Number of units of the intermediate (i.e.,
* hidden) dense layer.
* - latentDim {number} Dimensionality of the latent space (i.e,. z-space).
* @param {string} savePath Path to which the decoder part of the VAE model
* will be saved after training.
* @param {string?} logDir Optional path to log directory. If specified, the
* batch-by-batch loss values will be logged to the directory during training,
* so that the training process can be monitored using TensorBoard.
*/
async function train(images, vaeOpts, savePath, logDir) {
const encoderModel = encoder(vaeOpts);
const decoderModel = decoder(vaeOpts);
const vaeModel = vae(encoderModel, decoderModel);
let summaryWriter;
if (logDir != null) {
console.log(`Logging loss values to ${logDir}.`);
console.log(
`Use the following command to start the tensorboard backend server:`);
console.log(` tensorboard --logdir ${logDir}`);
summaryWriter = tf.node.summaryFileWriter(logDir);
}
console.log('\n** Train Model **\n');
// Because we use a custom loss function, we will use optimizer.minimize
// instead of the more typical model.fit. We thus need to define an optimizer
// and manage batching the data ourselves.
// Cteate the optimizer
const optimizer = tf.train.adam();
// Group the data into batches.
const batches = _.chunk(images, batchSize);
// Run the train loop.
let step = 0;
for (let i = 0; i < epochs; i++) {
console.log(`\nEpoch #${i + 1} of ${epochs}\n`);
for (let j = 0; j < batches.length; j++) {
const currentBatchSize = batches[j].length
const batchedImages = batchImages(batches[j]);
const reshaped =
batchedImages.reshape([currentBatchSize, vaeOpts.originalDim]);
// This is the model optimization step. We make a prediction
// compute loss and return it so that optimizer.minimize can
// adjust the weights of the model.
optimizer.minimize(() => {
const outputs = vaeModel.apply(reshaped);
const loss = vaeLoss(reshaped, outputs, vaeOpts);
process.stdout.write('.');
if (j % 50 === 0) {
console.log('\nLoss:', loss.dataSync()[0]);
}
if (summaryWriter != null) {
summaryWriter.scalar('loss', loss, step++);
}
return loss;
});
tf.dispose([batchedImages, reshaped]);
}
console.log('');
// Generate a preview after each epoch
await generate(decoderModel, vaeOpts.latentDim);
}
console.log('done training');
saveDecoder(savePath, decoderModel);
}
/**
* Generate an image and preview it on the console.
*
* @param {tf.LayersModel} decoderModel Decoder portion of the VAE.
* @param {number} latentDimSize Dimensionality of the latent space.
*/
async function generate(decoderModel, latentDimSize) {
const targetZ = tf.zeros([latentDimSize]).expandDims();
const generated = (decoderModel.predict(targetZ));
await previewImage(generated.dataSync());
tf.dispose([targetZ, generated]);
}
async function saveDecoder(savePath, decoderModel) {
const decoderPath = path.join(savePath, 'decoder');
mkdirp.sync(decoderPath);
const saveURL = `file://${decoderPath}`;
console.log(`Saving decoder to ${saveURL}`);
await decoderModel.save(saveURL);
}
async function run(savePath, logDir) {
// Load the data
const dataPath = path.join(DATASET_PATH, TRAIN_IMAGES_FILE);
const images = await loadImages(dataPath);
console.log('Data Loaded', images.length);
await previewImage(images[5]);
await previewImage(images[50]);
await previewImage(images[500]);
// Start the training.
const vaeOpts = {
originalDim: IMAGE_FLAT_SIZE,
intermediateDim: INTERMEDIATE_DIM,
latentDim: LATENT_DIM
};
await train(images, vaeOpts, savePath, logDir);
}
(async function() {
const parser = new argparse.ArgumentParser();
parser.addArgument('--gpu', {
action: 'storeTrue',
help: 'Use tfjs-node-gpu for training (required CUDA and CuDNN)'
});
parser.addArgument('--epochs', {
type: 'int',
defaultValue: 100,
help: 'Number of epochs to train the model for'
});
parser.addArgument('--batchSize', {
type: 'int',
defaultValue: 256,
help: 'Batch size to be used during model training'
});
parser.addArgument('--logDir', {
type: 'string',
help: 'Directory to which the TensorBoard summaries will be saved ' +
'during training.'
});
parser.addArgument('--savePath', {
type: 'string',
defaultValue: './models',
help: 'Directory to which the decoder part of the VAE model will ' +
'be saved after training. If the directory does not exist, it will be ' +
'created.'
});
const args = parser.parseArgs();
epochs = args.epochs;
batchSize = args.batchSize;
if (args.gpu) {
console.log('Training using GPU.');
tf = require('@tensorflow/tfjs-node-gpu');
} else {
console.log('Training using CPU.');
tf = require('@tensorflow/tfjs-node');
}
await run(args.savePath, args.logDir);
})();});