-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Pretraining Script
The script scripts/run_clm_pt_with_peft.py is used for Pre-training Stage 2. However, we do not recommend performing Pre-training Stage 1 if the computational resources and time are limited as the model takes longer to converge.
Execute the following command to start pre-training (some variables need to be specified by the suer):
lr=2e-4
lora_rank=8
lora_trainable="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj"
modules_to_save="embed_tokens,lm_head"
lora_droppout=0.1
python scripts/run_clm_pt_with_peft.py \
--model_name_or_path ${pretrained_model} \
--tokenizer_name_or_path ${chinese_tokenizer_path} \
--dataset_dir ${dataset_dir} \
--data_cache_dir $data_cache \
--validation_split_percentage 0.001 \
--per_device_train_batch_size ${per_device_batch_size} \
--per_device_eval_batch_size ${per_device_batch_size} \
--do_train \
--seed $RANDOM \
--fp16
--max_steps ${training_steps} \
--lr_scheduler_type cosine \
--leraning_rate ${lr} \
--warmup_ratio 0.05 \
--weight_decay 0.01 \
--logging_strategy steps \
--logging_steps 10 \
--save_strategy steps \
--save_total_limit 3 \
--save_steps 500 \
--gradient_accumulation_steps ${gradient_accumulation_steps} \
--preprocessing_num_workers 8 \
--block_size 512 \
--output_dir ${output_dir} \
--overwrite_output_dir \
--ddp_timeout 30000 \
--logging_first_step True \
--lora_rank ${lora_rank} \
--trainable ${lora_trainable} \
--modules_to_save ${modules_to_save} \
--lora_dropout ${lora_dropout} \
--torch_dtype float16
The meanings of most arguments are self-evident. Here are explanations for some of the arguments:
- ${pretrained_model}: Location of the original LLaMA model in HuggingFace format.
- ${chinese_tokenizer_path}: Directory where the Chinese-LLaMA tokenizer is located.
- ${dataset_dir}: Directory of the pre-training data, which can contain multiple plain text files.
- ${--data_cache_dir}: A directory to store data caching files.
The hyperparameters listed here (especially the learning rate and parameters related to the total batch size) are for reference only. Please feel free to adjust them based your training data and hardware conditions.
To use DeepSpeed, you can add the following argument --deepspeed ${deepspeed_config_file}
. Additionally, you should use torchrun to launch the script:
torchrun --nnodes ${num_nodes} --nproc_per_node ${num_gpu_per_node} --node_rank ${node_rank} --master_addr ${master_addr} --master_port ${master_port} run_clm_pt_with_peft.py ...
**Due to frequent changes in the Peft library, this code is only applicable to specific versions of Peft. Please install Peft commit id 13e53fc from source. Using other versions of Peft may result in undesirable training behavior and results.
- 模型合并与转换
- 模型量化、推理、部署
- 效果与评测
- 训练细节
- 常见问题
- Model Reconstruction
- Model Quantization, Inference and Deployment
- System Performance
- Training Details
- FAQ