-
Notifications
You must be signed in to change notification settings - Fork 177
/
Copy pathbinary_train.py
327 lines (252 loc) · 12 KB
/
binary_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import argparse
import os
import time
import shutil
import torch
import torchvision
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from torch.nn.utils import clip_grad_norm
from ssn_opts import parser
from load_binary_score import BinaryDataSet
from binary_model import BinaryClassifier
from transforms import *
from ops.utils import get_actionness_configs
from torch.utils import model_zoo
best_loss = 100
def main():
global args, best_loss
args = parser.parse_args()
dataset_configs = get_actionness_configs(args.dataset)
sampling_configs = dataset_configs['sampling']
num_class = dataset_configs['num_class']
args.dropout = 0.8
if args.modality == 'RGB':
data_length = 1
elif args.modality in ['Flow','RGBDiff']:
data_length = 5
else:
raise ValueError("unknown modality {}".format(args.modality))
model = BinaryClassifier(num_class, args.num_body_segments,
args.modality, new_length = data_length,
base_model=args.arch, dropout=args.dropout,
bn_mode=args.bn_mode)
if args.init_weights:
if os.path.isfile(args.init_weights):
print(("=> loading pretrained weights from '{}'".format(args.init_weights)))
wd = torch.load(args.init_weights)
model.base_model.load_state_dict(wd['state_dict'])
print(("=> no weights file found at '{}'".format(args.init_weights)))
else:
print(("=> no weights file found at '{}'".format(args.init_weights)))
elif args.kinetics_pretrain:
model_url = dataset_configs['kinetics_pretrain'][args.arch][args.modality]
model.base_model.load_state_dict(model_zoo.load_url(model_url)['state_dict'])
print(("=> loaded init weights from '{}'".format(model_url)))
else:
# standard ImageNet pretraining
if args.modality == 'Flow':
model_url = dataset_configs['flow_init'][args.arch]
model.base_model.load_state_dict(model_zoo.load_url(model_url)['state_dict'])
print(("=> loaded flow init weights from '{}'".format(model_url)))
crop_size = model.crop_size
scale_size = model.scale_size
input_mean = model.input_mean
input_std = model.input_std
policies = model.get_optim_policies()
train_augmentation = model.get_augmentation()
model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
cudnn.benchmark = True
pin_memory = (args.modality == 'RGB')
# Data loading code
if args.modality != 'RGBDiff':
normalize = GroupNormalize(input_mean, input_std)
else:
normalize = IdentityTransform()
train_prop_file = 'data/{}_proposal_list.txt'.format(dataset_configs['train_list'])
val_prop_file = 'data/{}_proposal_list.txt'.format(dataset_configs['test_list'])
train_loader = torch.utils.data.DataLoader(
BinaryDataSet("", train_prop_file,
new_length=data_length,
modality=args.modality, exclude_empty=True,
body_seg=args.num_body_segments,
image_tmpl="img_{:05d}.jpg" if args.modality in ['RGB', 'RGBDiff'] else args.flow_prefix+"{}_{:05d}.jpg",
transform=torchvision.transforms.Compose([
train_augmentation,
Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
ToTorchFormatTensor(div=(args.arch not in ['BNInception', 'InceptionV3'])),
normalize,
])),
batch_size=4, shuffle=True,
num_workers=args.workers, pin_memory=pin_memory,
drop_last = True)
val_loader = torch.utils.data.DataLoader(
BinaryDataSet("", val_prop_file, new_length=data_length,
modality=args.modality, exclude_empty=True,
body_seg = args.num_body_segments,
image_tmpl="img_{:05}.jpg" if args.modality in ["RGB", "RGBDiff"] else args.flow_prefix+"{}_{:05d}.jpg",
random_shift=False, fg_ratio = 6, bg_ratio = 6,
transform=torchvision.transforms.Compose([
GroupScale(int(scale_size)),
GroupCenterCrop(crop_size),
Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
ToTorchFormatTensor(div=(args.arch not in ['BNInception', 'InceptionV3'])),
normalize,
])),
batch_size=4, shuffle=False,
num_workers=args.workers, pin_memory=pin_memory)
binary_criterion = torch.nn.CrossEntropyLoss().cuda()
for group in policies:
print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
group['name'], len(group['params']), group['lr_mult'], group['decay_mult'])))
optimizer = torch.optim.SGD(policies,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args.lr_steps)
# train for one epoch
train(train_loader, model, binary_criterion, optimizer, epoch)
# evaluate on validation list
if (epoch + 1) % args.eval_freq ==0 or epoch == args.epochs - 1:
loss = validate(val_loader, model, binary_criterion, (epoch + 1) * len(train_loader))
# remember best prec@1 and save checkpoint
is_best = loss < best_loss
best_loss = min(loss, best_loss)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_loss': best_loss,
}, is_best)
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
fg_accuracies = AverageMeter()
bg_accuracies = AverageMeter()
# switch to train model
model.train()
end = time.time()
optimizer.zero_grad()
for i, (out_frames, out_prop_type) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input_var = torch.autograd.Variable(out_frames)
prop_type_var = torch.autograd.Variable(out_prop_type)
# compute output
binary_score, prop_type_target = model(input_var, prop_type_var)
loss = criterion(binary_score, prop_type_target)
losses.update(loss.data[0], out_frames.size(0))
fg_acc = accuracy(binary_score.view(-1, 2, binary_score.size(1))[:,0,:].contiguous(),
prop_type_target.view(-1, 2)[:, 0].contiguous())
bg_acc = accuracy(binary_score.view(-1, 2, binary_score.size(1))[:,1,:].contiguous(),
prop_type_target.view(-1, 2)[:, 1].contiguous())
fg_accuracies.update(fg_acc[0].data[0], binary_score.size(0) // 2)
bg_accuracies.update(bg_acc[0].data[0], binary_score.size(0) // 2)
# compute gradient and do SGD step
loss.backward()
if i % args.iter_size == 0:
# scale down gradients when iter size is functioning
if args.iter_size != 1:
for g in optimizer.param_groups:
for p in g['params']:
p.grad /= args.iter_size
if args.clip_gradient is not None:
total_norm = clip_grad_norm(model.parameters(), args.clip_gradient)
if total_norm > args.clip_gradient:
print('Clipping gradient: {} with coef {}'.format(total_norm, args.clip_gradient / total_norm))
else:
total_norm = 0
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'\n FG{fg_acc.val:.02f}({fg_acc.avg:.02f}) BG {bg_acc.val:.02f} ({bg_acc.avg:.02f})'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, lr=optimizer.param_groups[0]['lr'],
fg_acc=fg_accuracies, bg_acc=bg_accuracies)
)
def validate(val_loader, model, criterion, iter):
batch_time = AverageMeter()
losses = AverageMeter()
fg_accuracies = AverageMeter()
bg_accuracies = AverageMeter()
model.eval()
end = time.time()
for i, (out_frames, out_prop_type) in enumerate(val_loader):
input_var = torch.autograd.Variable(out_frames, volatile=True)
prop_type_var = torch.autograd.Variable(out_prop_type)
# compute output
binary_score, prop_type_target = model(input_var, prop_type_var)
loss = criterion(binary_score, prop_type_target)
losses.update(loss.data[0], out_frames.size(0))
fg_acc = accuracy(binary_score.view(-1, 2, binary_score.size(1))[:,0,:].contiguous(),
prop_type_target.view(-1,2)[:, 0].contiguous())
bg_acc = accuracy(binary_score.view(-1, 2, binary_score.size(1))[:,1,:].contiguous(),
prop_type_target.view(-1,2)[:, 1].contiguous())
fg_accuracies.update(fg_acc[0].data[0], binary_score.size(0) // 2)
bg_accuracies.update(bg_acc[0].data[0], binary_score.size(0) // 2)
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'FG {fg_acc.val:.02f} BG {bg_acc.val:.02f}'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
fg_acc=fg_accuracies, bg_acc=bg_accuracies))
print('Testing Results: Loss {loss.avg:.5f} \t'
'FG Acc. {fg_acc.avg:.02f} BG Acc. {bg_acc.avg:.02f}'
.format(loss=losses, fg_acc=fg_accuracies, bg_acc=bg_accuracies))
return losses.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
filename = 'binaryclassifier'+'_'.join((args.snapshot_pref, args.dataset, args.arch, args.modality.lower(), filename))
torch.save(state, filename)
if is_best:
best_name = '_'.join((args.snapshot_pref, args.modality.lower(), 'model_best.pth.tar'))
shutil.copyfile(filename, best_name)
def adjust_learning_rate(optimizer, epoch, lr_steps):
# Set the learning rate to the initial LR decayed by 10 every 30 epoches
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.lr * decay
decay = args.weight_decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr * param_group['lr_mult']
param_group['weight_decay'] = decay * param_group['decay_mult']
class AverageMeter(object):
# Computes and stores the average and current value
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
# computes the precision@k for the specific values of k
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()