-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
397 lines (363 loc) · 15.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# A few utility functions
import itertools
import numpy as np
###############################################
# Generally useful functions #
###############################################
# useful with reshape
def linearize_indices(indices, dims):
res = []
remain = indices
for i, _ in enumerate(dims):
res = [remain % dims[-i - 1]] + res
remain = remain / dims[-i - 1]
linearized = tf.transpose(tf.pack(res))
return linearized
###############################################
# Data reading functions #
###############################################
class Config:
def __init__(self, batch_size=20, num_steps=32, learning_rate=1e-2,
l1_reg=2e-3, l1_list=[],
l2_reg=2e-3, l2_list=[],
features_dim=50, init_words=False, input_features=[],
use_rnn=False, rnn_hidden_units=100, rnn_output_size=50,
use_convo=False, conv_window=5, conv_dim=50,
pot_size=1,
pred_window=1, tag_list=[],
verbose=False, num_epochs=10, num_predict=5):
# optimization parameters
self.batch_size = batch_size
self.num_steps = num_steps
self.learning_rate = learning_rate
# regularization parameters
self.l1_reg = l1_reg
self.l1_list = l1_list
self.l2_reg = l2_reg
self.l2_list = l2_list
# input layer
self.features_dim = features_dim
self.init_words = init_words
self.input_features = input_features
# recurrent layer
self.use_rnn = use_rnn
self.rnn_hidden_units = rnn_hidden_units
self.rnn_output_size = rnn_output_size
# convolutional layer
self.use_convo = use_convo
self.conv_window = conv_window
self.conv_dim = conv_dim
# CRF parameters:
self.pot_size = pot_size
self.n_tags = len(tag_list)
# output layer
self.pred_window = pred_window
self.tag_list = tag_list
self.label_dict = {}
tags_ct = 0
for element in itertools.product(tag_list, repeat=pred_window):
tag_st = '_'.join(element)
mid = element[pred_window / 2]
if mid == '<P>':
self.label_dict[tag_st] = (-1, tag_list.index(mid))
else:
self.label_dict[tag_st] = (tags_ct, tag_list.index(mid))
tags_ct += 1
self.n_outcomes = tags_ct
# misc parameters
self.verbose = verbose
self.num_epochs = num_epochs
self.num_predict = num_predict
def make_mappings(self, data):
self.feature_maps = dict([(feat, {'lookup': {'_unk_': 0},
'reverse': ['_unk_']})
for feat in data[0][0]])
for sentence in data:
for token in sentence:
for feat in data[0][0]:
ft = token[feat]
if ft not in self.feature_maps[feat]['lookup']:
self.feature_maps[feat]['lookup'][ft] = \
len(self.feature_maps[feat]['reverse'])
self.feature_maps[feat]['reverse'] += [ft]
def to_string(self):
st = ''
for k, v in self.__dict__.items():
if k not in ['feature_maps', 'label_dict']:
st += k + ' --- ' + str(v) + ' \n'
return st
class Batch:
def __init__(self):
# features: {'word': 'have', 'pos': 'VB', ...} ->
# [1345, 12 * num_features + 1,...]
self.features = []
# tags: 'B' -> 1
self.tags = []
# tags_one_hot: 'B' -> [0, 1, 0, 0, 0, 0]
self.tags_one_hot = []
# tag_windows: '<P>_B_O' -> [0, 1, 3]
self.tag_windows = []
# tag_windows_lin: '<P>_B_O' -> num_values * token_id + 0 * config.n_tags **2 + 1 * config.n_tags + 3
self.tag_windows_lin = []
# tag_windows_one_hot: '<P>_B_O' -> [0, ..., 0, 1, 0, ..., 0]
self.tag_windows_one_hot = []
# tag_neighbours: '<P>_B_O' -> [0, 3]
self.tag_neighbours = []
# tag_neighbours_linearized: '<P>_B_O' -> num_values * token_id + 0 * config.n_tags + 3
self.tag_neighbours_lin = []
# mask: <P> -> 0, everything else -> 1
def read(self, data, start, config, fill=False):
num_features = len(config.input_features)
batch_data = data[start:start + config.batch_size]
batch_features = [[[config.feature_maps[feat]['lookup'][token[feat]]
for feat in config.input_features]
for token in sentence]
for sentence in batch_data]
batch_labels = [[config.label_dict[token['label']]
for token in sentence]
for sentence in batch_data]
# multiply feature indices for use in tf.nn.embedding_lookup
self.features = [[[num_features * ft + i for i, ft in enumerate(word)]
for word in sentence] for sentence in batch_features]
self.tags = [[label[1] for label in sentence]
for sentence in batch_labels]
self.tags_one_hot = [[[int(x == label[1] and x > 0) # TODO: count padding tokens?
for x in range(config.n_tags)]
for label in sentence]
for sentence in batch_labels]
self.tag_windows_one_hot = [[[int(x == label[0])
for x in range(config.n_outcomes)]
for label in sentence]
for sentence in batch_labels]
if fill:
max_len = max(config.conv_window,
max([len(sentence) for sentence in batch_data]) + 2)
for i in range(config.batch_size):
current_len = len(batch_data[i])
pre_len = (max_len - current_len) / 2
post_len = max_len - pre_len - current_len
self.features[i] = [range(num_features)] * pre_len + \
self.features[i] + \
[range(num_features)] * post_len
self.tags[i] = [0] * pre_len + self.tags[i] + [0] * post_len
self.tags_one_hot[i] = [[0] * config.n_outcomes] * pre_len + \
self.tags_one_hot[i] + \
[[0] * config.n_outcomes] * post_len
self.tag_windows_one_hot[i] = [[0] * config.n_outcomes] * pre_len + \
self.tag_windows_one_hot[i] + \
[[0] * config.n_outcomes] * post_len
mid = config.pot_window / 2
padded_tags = [[0] * mid + sentence + [0] * mid
for sentence in self.tags]
# get linearized window indices
self.tag_windows = [[sent[i + j] for j in range(-mid, mid + 1)]
for sent in padded_tags
for i in range(mid, len(sent) - mid)]
n_indices = config.n_tags ** config.pot_window
self.tag_windows_lin = [sum([t * (config.n_tags ** (config.pot_window - 1 - i))
for i, t in enumerate(window)]) + i * n_indices
for i, window in enumerate(self.tag_windows)]
# get linearized potential indices
self.tag_neighbours = [[sent[i + j]
for j in range(-mid, 0) + range(1, mid + 1)]
for sent in padded_tags
for i in range(mid, len(sent) - mid)]
max_pow = config.pot_window - 1
n_indices = config.n_tags ** max_pow
self.tag_neighbours_lin = [sum([idx * (config.n_tags) ** (max_pow - j - 1)
for j, idx in enumerate(token)]) + i * n_indices
for i, token in enumerate(self.tag_neighbours)]
# make mask:
self.mask = [[int(tag > 0) for tag in sent] for sent in self.tags]
def aggregate_labels(sentence, config):
pre_tags = ['<P>'] * (config.pred_window / 2)
sentence_ext = pre_tags + [token['label']
for token in sentence] + pre_tags
for i, token in enumerate(sentence):
current = token['label']
sentence[i]['label'] = '_'.join([sentence_ext[i+j]
for j in range(config.pred_window)])
def read_data(file_name, features, config):
sentences = []
sentence = []
f = open(file_name)
c = 0
for line in f:
c += 1
if c % 100000 == 0:
print c, 'lines read'
if len(line.strip()) == 0 and len(sentence) > 0:
sentences += [sentence[:]]
sentence = []
else:
sentence += [dict(zip(features, line.strip().split('\t')))]
if len(sentence) > 0:
sentences += [sentence[:]]
f.close()
foo = [aggregate_labels(sentence, config) for sentence in sentences]
return sentences
def show(sentence):
return ' '.join([token['word']+'/'+token['label'] for token in sentence])
# read pre_trained word vectors
def read_vectors(file_name, vocab):
vectors = {}
f = open(file_name)
dim = int(f.readline().strip().split()[1])
for line in f:
w = line.split()[0]
vec = [float(x) for x in line.strip().split()[1:]]
vectors[w] = np.array(vec)
f.close()
res = np.zeros((len(vocab), dim))
for i, w in enumerate(vocab):
res[i] = vectors.get(w, np.zeros(dim))
return res
# extract windows from data to fit into unrolled RNN. Independent sentences
def cut_and_pad(data, config):
pad_token = dict([(feat, '_unk_') for feat in data[0][0]])
pad_token['label'] = '_'.join(['<P>'] * config.pred_window)
num_steps = config.num_steps
res = []
seen = 0
pad_len = max(config.pred_window, config.pot_window) / 2
sen = [pad_token] * pad_len + data[0] + [pad_token] * pad_len
while seen < len(data):
if len(sen) < num_steps:
if sen[0]['label'] == '<P>':
new_sen = ((num_steps - len(sen)) / 2) * [pad_token] + sen
else:
new_sen = sen
new_sen = new_sen + (num_steps - len(new_sen)) * [pad_token]
res += [new_sen[:]]
seen += 1
if seen < len(data):
sen = [pad_token] * pad_len + data[seen] + [pad_token] * pad_len
else:
res += [sen[:num_steps]]
sen = sen[(2 * num_steps) / 3:]
return res
# extract windows from data to fit into unrolled RNN. Continuous model
def cut_batches(data, config):
pad_token = dict([(feat, '_unk_') for feat in data[0][0]])
pad_token['label'] = '_'.join(['<P>'] * config.pred_window)
padding = [pad_token] * config.pred_window
new_data = padding + [tok for sentence in data
for tok in sentence + padding]
step_size = (config.num_steps / 2)
num_cuts = len(new_data) / step_size
res = [new_data[i * step_size: i * step_size + config.num_steps]
for i in range(num_cuts)]
res[-1] = res[-1] + [pad_token] * (config.num_steps - len(res[-1]))
return res
###############################################
# NN evaluation functions #
###############################################
def treat_spans(spans_file):
span_lists = []
f = open(spans_file)
y = []
for line in f:
if line.strip() == '':
span_lists += [y[:]]
y = []
else:
lsp = line.strip().split()
y = y + [(int(lsp[0]), int(lsp[1]), lsp[2])]
f.close()
return span_lists
def find_gold(sentence):
gold = []
current_gold = []
for i, token in enumerate(sentence):
if token['label'] == 'B' or token['label'] == 'O':
if len(current_gold) > 0:
gold += [tuple(current_gold)]
current_gold = []
if 'I' in token['label'] or token['label'] == 'B':
current_gold += [i]
if len(current_gold) > 0:
gold += [tuple(current_gold)]
return gold
def make_scores(token, thr):
res = dict([(key, val)
for key, val in token.items()
if key in ['O', 'OD', 'I', 'ID', 'B'] and val > thr])
return res
def find_mentions(sentence, thr=0.02):
scores = [make_scores(token, thr) for token in sentence]
found = []
working = []
for i, score in enumerate(scores):
if 'B' in score or 'O' in score:
for work in working:
if work[0][-1] == i-1:
sc = work[1] + np.log(score.get('B', 0) +
score.get('O', 0))
sc /= (work[0][-1] + 2 - work[0][0])
found += [(tuple(work[0]), np.exp(sc))]
if len(score) == 1 and 'O' in score:
working = []
else:
new_working = []
if 'B' in score:
new_working = [[[i], np.log(score['B']), False]]
for work in working:
for tg, sc in score.items():
if tg == 'OD':
new_working += [[work[0], work[1] + np.log(sc), True]]
elif tg == 'ID' and work[2]:
new_working += [[work[0] + [i], work[1] + np.log(sc),
True]]
elif tg == 'I' and not work[2]:
new_working += [[work[0] + [i], work[1] + np.log(sc),
False]]
working = new_working[:]
if len(working) > 1000:
working = sorted(working, key=lambda x: x[1],
reverse=True)[:1000]
return sorted(found, key=lambda x: x[1], reverse=True)
def read_sentence(sentence):
return (sentence, find_gold(sentence), find_mentions(sentence))
def merge(sentences, spans):
res = []
sent = read_sentence(sentences[0])
span = spans[0]
for i, sp in enumerate(spans):
if i == 0:
continue
if sp[0] == span[0]:
sen = read_sentence(sentences[i])
gold = sorted(list(set(sen[1] + sent[1])))
sent = (sen[0], gold, sen[2])
else:
res += [(sent, span)]
sent = read_sentence(sentences[i])
span = spans[i]
res += [(sent, span)]
return res
def evaluate(merged_sentences, threshold):
TP = 0
FP = 0
FN = 0
for sentence in merged_sentences:
true_mentions = sentence[0][1]
tp = 0
for pred in sentence[0][2]:
if pred[1] >= threshold:
if pred[0] in true_mentions:
tp += 1
else:
FP += 1
TP += tp
FN += len(true_mentions) - tp
if (TP + FP) == 0:
prec = 0
recall = 0
else:
prec = float(TP) / (TP + FP)
recall = float(TP) / (TP + FN)
if prec == 0 or recall == 0:
f1 = 0
else:
f1 = 2 * (prec * recall) / (prec + recall)
print 'TH:', threshold, '\t', 'P:', prec, '\t', 'R:', recall, '\t', 'F:', f1