-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrain.py
128 lines (109 loc) · 4.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
"""
Created on 2018/12/16 上午9:30
@author: mick.yi
训练frcnn
"""
import argparse
import sys
import os
import tensorflow as tf
import tensorflow.python.keras as keras
from faster_rcnn.config import current_config as config
from faster_rcnn.preprocess.input import VocDataset
from faster_rcnn.utils.generator import Generator
from faster_rcnn.layers import models
from faster_rcnn.utils import model_utils
from tensorflow.python.keras.callbacks import TensorBoard, ModelCheckpoint, LearningRateScheduler
def set_gpu_growth():
# os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in range(gpu_count)])
config.GPU_LIST = os.environ["CUDA_VISIBLE_DEVICES"].split(',')
config.GPU_COUNT = len(config.GPU_LIST)
config.BATCH_SIZE = config.IMAGES_PER_GPU * config.GPU_COUNT
cfg = tf.ConfigProto(allow_soft_placement=True) # because no supported kernel for GPU devices is available
cfg.gpu_options.allow_growth = True
session = tf.Session(config=cfg)
keras.backend.set_session(session)
def lr_schedule(epoch):
if epoch < 20:
return config.LEARNING_RATE
elif epoch < 60:
return config.LEARNING_RATE / 10.
else:
return 1e-4
def get_call_back():
"""
定义call back
:return:
"""
checkpoint = ModelCheckpoint(filepath='/tmp/frcnn-' + config.BASE_NET_NAME + '.{epoch:03d}.h5',
monitor='val_loss',
verbose=1,
save_best_only=False,
save_weights_only=True,
save_freq='epoch')
scheduler = LearningRateScheduler(lr_schedule)
log = TensorBoard(log_dir='log')
return [checkpoint, scheduler, log]
def main(args):
set_gpu_growth()
dataset = VocDataset(config.voc_path, class_mapping=config.CLASS_MAPPING)
dataset.prepare()
train_img_info = [info for info in dataset.get_image_info_list() if info['type'] == 'trainval'] # 训练集
print("train_img_info:{}".format(len(train_img_info)))
test_img_info = [info for info in dataset.get_image_info_list() if info['type'] == 'test'] # 测试集
print("test_img_info:{}".format(len(test_img_info)))
if config.GPU_COUNT > 1:
with tf.device('/cpu:0'):
m = models.frcnn(config, stage='train')
m = keras.utils.multi_gpu_model(m, gpus=config.GPU_COUNT)
else:
m = models.frcnn(config, stage='train')
# 加载预训练模型
init_epochs = args.init_epochs
if args.init_epochs > 0:
m.load_weights('/tmp/frcnn-{}.{:03d}.h5'.format(config.BASE_NET_NAME, init_epochs), by_name=True)
else:
m.load_weights(config.pretrained_weights, by_name=True)
# 生成器
train_gen = Generator(train_img_info,
config.IMAGE_INPUT_SHAPE,
config.MEAN_PIXEL,
config.BATCH_SIZE,
config.MAX_GT_INSTANCES,
horizontal_flip=config.USE_HORIZONTAL_FLIP,
random_crop=config.USE_RANDOM_CROP)
# 生成器
val_gen = Generator(test_img_info[:500],
config.IMAGE_INPUT_SHAPE,
config.MEAN_PIXEL,
config.BATCH_SIZE,
config.MAX_GT_INSTANCES)
# 训练conv3 及以上
models.set_trainable(config.TRAIN_LAYERS, m)
loss_names = ["rpn_bbox_loss", "rpn_class_loss", "rcnn_bbox_loss", "rcnn_class_loss"]
model_utils.compile(m, config.LEARNING_RATE, config.LEARNING_MOMENTUM,
config.GRADIENT_CLIP_NORM, config.WEIGHT_DECAY, loss_names, config.LOSS_WEIGHTS)
m.summary()
# 增加个性化度量
metric_names = ['gt_num', 'positive_anchor_num', 'negative_anchor_num', 'rpn_miss_gt_num',
'rpn_gt_min_max_iou', 'roi_num', 'positive_roi_num', 'negative_roi_num',
'rcnn_miss_gt_num', 'rcnn_miss_gt_num_as', 'gt_min_max_iou']
model_utils.add_metrics(m, metric_names, m.outputs[-11:])
# 训练
m.fit_generator(train_gen,
epochs=args.epochs,
steps_per_epoch=len(train_gen),
verbose=1,
initial_epoch=init_epochs,
validation_data=val_gen,
validation_steps=len(val_gen),
use_multiprocessing=False,
workers=10,
callbacks=get_call_back())
if __name__ == '__main__':
parse = argparse.ArgumentParser()
parse.add_argument("--epochs", type=int, default=80, help="epochs")
parse.add_argument("--init_epochs", type=int, default=0, help="init_epochs")
arguments = parse.parse_args(sys.argv[1:])
main(arguments)