-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtrain_resnet_fit.py
101 lines (76 loc) · 3.03 KB
/
train_resnet_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import argparse
import json
import os
import os.path as osp
import torch
import torch.nn as nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from utils import set_gpu, ensure_path
from models.resnet import ResNet
from datasets.image_folder import ImageFolder
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pred')
parser.add_argument('--train-dir')
parser.add_argument('--save-path', default='save/resnet-fit')
parser.add_argument('--gpu', default='0')
args = parser.parse_args()
set_gpu(args.gpu)
save_path = args.save_path
ensure_path(save_path)
pred = torch.load(args.pred)
train_wnids = sorted(os.listdir(args.train_dir))
train_dir = args.train_dir
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(train_dir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize]))
loader = torch.utils.data.DataLoader(
train_dataset, batch_size=64, shuffle=True,
num_workers=4, pin_memory=True, sampler=None)
assert pred['wnids'][:1000] == train_wnids
model = ResNet('resnet50', 1000)
sd = model.resnet_base.state_dict()
sd.update(torch.load('materials/resnet50-base.pth'))
model.resnet_base.load_state_dict(sd)
fcw = pred['pred'][:1000].cpu()
model.fc.weight = nn.Parameter(fcw[:, :-1])
model.fc.bias = nn.Parameter(fcw[:, -1])
model = model.cuda()
model.train()
optimizer = torch.optim.SGD(model.resnet_base.parameters(), lr=0.0001, momentum=0.9)
loss_fn = nn.CrossEntropyLoss().cuda()
keep_ratio = 0.9975
trlog = {}
trlog['loss'] = []
trlog['acc'] = []
for epoch in range(1, 9999):
ave_loss = None
ave_acc = None
for i, (data, label) in enumerate(loader, 1):
data = data.cuda()
label = label.cuda()
logits = model(data)
loss = loss_fn(logits, label)
_, pred = torch.max(logits, dim=1)
acc = torch.eq(pred, label).type(torch.FloatTensor).mean().item()
if i == 1:
ave_loss = loss.item()
ave_acc = acc
else:
ave_loss = ave_loss * keep_ratio + loss.item() * (1 - keep_ratio)
ave_acc = ave_acc * keep_ratio + acc * (1 - keep_ratio)
print('epoch {}, {}/{}, loss={:.4f} ({:.4f}), acc={:.4f} ({:.4f})'
.format(epoch, i, len(loader), loss.item(), ave_loss, acc, ave_acc))
optimizer.zero_grad()
loss.backward()
optimizer.step()
trlog['loss'].append(ave_loss)
trlog['acc'].append(ave_acc)
torch.save(trlog, osp.join(save_path, 'trlog'))
torch.save(model.resnet_base.state_dict(),
osp.join(save_path, 'epoch-{}.pth'.format(epoch)))