-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
executable file
·143 lines (123 loc) · 7.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import torch
from scene import Scene
import uuid
from utils.image_utils import psnr, lpips, alex_lpips
from utils.image_utils import ssim as ssim_func
from piq import LPIPS
lpips = LPIPS()
from argparse import Namespace
from pytorch_msssim import ms_ssim
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str = os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok=True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene: Scene, renderFunc, renderArgs, deform, load2gpu_on_the_fly, progress_bar=None):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
test_psnr = 0.0
test_ssim = 0.0
test_lpips = 1e10
test_ms_ssim = 0.0
test_alex_lpips = 1e10
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras': scene.getTestCameras()},
{'name': 'train',
'cameras': [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
# images = torch.tensor([], device="cuda")
# gts = torch.tensor([], device="cuda")
psnr_list, ssim_list, lpips_list, l1_list = [], [], [], []
ms_ssim_list, alex_lpips_list = [], []
for idx, viewpoint in enumerate(config['cameras']):
if load2gpu_on_the_fly:
viewpoint.load2device()
fid = viewpoint.fid
xyz = scene.gaussians.get_xyz
if deform.name == 'mlp':
time_input = fid.unsqueeze(0).expand(xyz.shape[0], -1)
elif deform.name == 'node':
time_input = deform.deform.expand_time(fid)
else:
time_input = 0
d_values = deform.step(xyz.detach(), time_input, feature=scene.gaussians.feature, is_training=False, motion_mask=scene.gaussians.motion_mask, camera_center=viewpoint.camera_center)
d_xyz, d_rotation, d_scaling, d_opacity, d_color = d_values['d_xyz'], d_values['d_rotation'], d_values['d_scaling'], d_values['d_opacity'], d_values['d_color']
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, d_xyz=d_xyz, d_rotation=d_rotation, d_scaling=d_scaling, d_opacity=d_opacity, d_color=d_color, d_rot_as_res=deform.d_rot_as_res)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
l1_list.append(l1_loss(image[None], gt_image[None]).mean())
psnr_list.append(psnr(image[None], gt_image[None]).mean())
ssim_list.append(ssim_func(image[None], gt_image[None], data_range=1.).mean())
lpips_list.append(lpips(image[None], gt_image[None]).mean())
ms_ssim_list.append(ms_ssim(image[None], gt_image[None], data_range=1.).mean())
alex_lpips_list.append(alex_lpips(image[None], gt_image[None]).mean())
# images = torch.cat((images, image.unsqueeze(0)), dim=0)
# gts = torch.cat((gts, gt_image.unsqueeze(0)), dim=0)
if load2gpu_on_the_fly:
viewpoint.load2device('cpu')
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test = torch.stack(l1_list).mean()
psnr_test = torch.stack(psnr_list).mean()
ssim_test = torch.stack(ssim_list).mean()
lpips_test = torch.stack(lpips_list).mean()
ms_ssim_test = torch.stack(ms_ssim_list).mean()
alex_lpips_test = torch.stack(alex_lpips_list).mean()
if config['name'] == 'test' or len(validation_configs[0]['cameras']) == 0:
test_psnr = psnr_test
test_ssim = ssim_test
test_lpips = lpips_test
test_ms_ssim = ms_ssim_test
test_alex_lpips = alex_lpips_test
if progress_bar is None:
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {} SSIM {} LPIPS {} MS SSIM{} ALEX_LPIPS {}".format(iteration, config['name'], l1_test, psnr_test, ssim_test, lpips_test, ms_ssim_test, alex_lpips_test))
else:
progress_bar.set_description("\n[ITER {}] Evaluating {}: L1 {} PSNR {} SSIM {} LPIPS {} MS SSIM {} ALEX_LPIPS {}".format(iteration, config['name'], l1_test, psnr_test, ssim_test, lpips_test, ms_ssim_test, alex_lpips_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - ssim', test_ssim, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - lpips', test_lpips, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - ms-ssim', test_ms_ssim, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - alex-lpips', test_alex_lpips, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
return test_psnr, test_ssim, test_lpips, test_ms_ssim, test_alex_lpips