forked from openvinotoolkit/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate.yaml
75 lines (75 loc) · 2.35 KB
/
template.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
name: instance-segmentation-0228
domain: Instance Segmentation
problem: COCO Instance Segmentation
framework: OTEDetection v2.1.1
summary: Instance segmentation based on Mask R-CNN architecture with ResNet101.
annotation_format: COCO
initial_weights: snapshot.pth
dependencies:
- sha256: 044a09477e1a1c24607833211254f14dca23f3e856ed1d1f6b6529e15fdb64bf
size: 383874216
source: https://download.01.org/opencv/openvino_training_extensions/models/instance_segmentation/v2/instance-segmentation-0228.pth
destination: snapshot.pth
- source: ../../../../../ote/tools/train.py
destination: train.py
- source: ../../../../../ote/tools/eval.py
destination: eval.py
- source: ../../../../../ote/tools/export.py
destination: export.py
- source: ../../../../../ote/tools/compress.py
destination: compress.py
- source: ../../../../../ote
destination: packages/ote
- source: ../../requirements.txt
destination: requirements.txt
dataset_requirements:
classes: [person, bicycle, car, motorcycle, airplane, bus, train, truck, boat,
traffic light, fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse,
sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie,
suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove,
skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork,
knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog,
pizza, donut, cake, chair, couch, potted plant, bed, dining table, toilet, tv,
laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator,
book, clock, vase, scissors, teddy bear, hair drier, toothbrush]
max_nodes: 1
training_target:
- GPU
inference_target:
- CPU
hyper_parameters:
basic:
batch_size: 16
base_learning_rate: 0.02
epochs: 36
output_format:
onnx:
default: true
openvino:
default: true
input_format: BGR
optimisations:
nncf_quantization:
config: compression_config.json
default: false
metrics:
- display_name: Bbox AP @ [IoU=0.50:0.95]
key: ap
unit: '%'
value: 39.0
- display_name: Segm AP @ [IoU=0.50:0.95]
key: ap
unit: '%'
value: 33.9
- display_name: Size
key: size
unit: Mp
value: 49.4374
- display_name: Complexity
key: complexity
unit: GFLOPs
value: 147.19
gpu_num: 2
config: model.py
tensorboard: true
estimated_batch_time: -1