-
Notifications
You must be signed in to change notification settings - Fork 16
/
pretrain.py
410 lines (339 loc) · 18.2 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
""" Pre-training function for 3DIoUMatch
Modified by Yezhen Cong, 2020
Based on: VoteNet
"""
import os
import sys
import time
import numpy as np
from datetime import datetime
import argparse
import importlib
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image, ImageDraw
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from models.dump_helper import dump_results
from models.loss_helper_labeled import get_labeled_loss
from models.votenet_iou_branch import VoteNet as Detector
# from models.loss_helper import get_loss, get_loss_iou
# from models.loss_helper_iou_jitter import get_loss_iou_jitter
from utils import pc_util
from utils.nn_distance import nn_distance
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
sys.path.append(os.path.join(ROOT_DIR, 'pointnet2'))
sys.path.append(os.path.join(ROOT_DIR, 'models'))
from pytorch_utils import BNMomentumScheduler
from tf_visualizer import Visualizer as TfVisualizer
from ap_helper import APCalculator, parse_predictions, parse_groundtruths
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='scannet', help='Dataset name. sunrgbd or scannet. [default: sunrgbd]')
parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint path [default: None]')
parser.add_argument('--log_dir', default='temp', help='Dump dir to save model checkpoint [default: log]')
parser.add_argument('--dump_dir', default=None, help='Dump dir to save sample outputs [default: None]')
parser.add_argument('--num_point', type=int, default=40000, help='Point Number [default: 20000]')
parser.add_argument('--num_target', type=int, default=128, help='Proposal number [default: 256]')
parser.add_argument('--vote_factor', type=int, default=1, help='Vote factor [default: 1]')
parser.add_argument('--cluster_sampling', default='seed_fps',
help='Sampling strategy for vote clusters: vote_fps, seed_fps, random [default: vote_fps]')
parser.add_argument('--ap_iou_thresh', type=float, default=0.25, help='AP IoU threshold [default: 0.25]')
parser.add_argument('--max_epoch', type=int, default=901, help='Epoch to run [default: 180]')
parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 8]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--weight_decay', type=float, default=0, help='Optimization L2 weight decay [default: 0]')
parser.add_argument('--bn_decay_step', type=int, default=20, help='Period of BN decay (in epochs) [default: 20]')
parser.add_argument('--bn_decay_rate', type=float, default=0.5, help='Decay rate for BN decay [default: 0.5]')
parser.add_argument('--lr_decay_steps', default='400, 600, 800',
help='When to decay the learning rate (in epochs) [default: 80,120,160]')
parser.add_argument('--lr_decay_rates', default='0.1, 0.1, 0.1', help='Decay rates for lr decay [default: 0.1,0.1,0.1]')
parser.add_argument('--no_height', action='store_true', help='Do NOT use height signal in input.')
parser.add_argument('--use_color', action='store_true', help='Use RGB color in input.')
parser.add_argument('--use_sunrgbd_v2', action='store_true', help='Use V2 box labels for SUN RGB-D dataset')
parser.add_argument('--overwrite', action='store_true', help='Overwrite existing log and dump folders.')
parser.add_argument('--dump_results', action='store_true', help='Dump results.')
parser.add_argument('--iou_weight', type=float, default=1.0)
parser.add_argument('--labeled_sample_list', default=None, type=str)
parser.add_argument('--print_interval', type=int, default=10, help='batch inverval to print loss')
parser.add_argument('--eval_interval', type=int, default=50, help='epoch inverval to evaluate model')
parser.add_argument('--save_interval', type=int, default=200, help='epoch interval to save model')
parser.add_argument('--resume', action='store_true')
FLAGS = parser.parse_args()
# ------------------------------------------------------------------------- GLOBAL CONFIG BEG
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
BN_DECAY_STEP = FLAGS.bn_decay_step
BN_DECAY_RATE = FLAGS.bn_decay_rate
LR_DECAY_STEPS = [int(x) for x in FLAGS.lr_decay_steps.split(',')]
LR_DECAY_RATES = [float(x) for x in FLAGS.lr_decay_rates.split(',')]
assert (len(LR_DECAY_STEPS) == len(LR_DECAY_RATES))
LOG_DIR = FLAGS.log_dir
DEFAULT_DUMP_DIR = os.path.join(BASE_DIR, LOG_DIR)
DUMP_DIR = FLAGS.dump_dir if FLAGS.dump_dir is not None else DEFAULT_DUMP_DIR
DEFAULT_CHECKPOINT_PATH = os.path.join(LOG_DIR, 'checkpoint.tar')
CHECKPOINT_PATH = FLAGS.checkpoint_path if FLAGS.checkpoint_path is not None \
else DEFAULT_CHECKPOINT_PATH
FLAGS.DUMP_DIR = DUMP_DIR
PERFORMANCE_FOUT = open(os.path.join(LOG_DIR, 'best.txt'), 'w')
print(FLAGS)
# Prepare LOG_DIR and DUMP_DIR
if os.path.exists(LOG_DIR) and FLAGS.overwrite:
print('Log folder %s already exists. Are you sure to overwrite? (Y/N)' % (LOG_DIR))
c = input()
if c == 'n' or c == 'N':
print('Exiting..')
exit()
elif c == 'y' or c == 'Y':
print('Overwrite the files in the log and dump folers...')
os.system('rm -r %s %s' % (LOG_DIR, DUMP_DIR))
if not os.path.exists(LOG_DIR):
os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'a')
LOG_FOUT.write(str(FLAGS) + '\n')
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
if not os.path.exists(DUMP_DIR): os.mkdir(DUMP_DIR)
# Init datasets and dataloaders
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
# Create Dataset and Dataloader
if FLAGS.dataset == 'sunrgbd':
from sunrgbd.sunrgbd_detection_dataset import SunrgbdDetectionVotesDataset, MAX_NUM_OBJ
from sunrgbd.model_util_sunrgbd import SunrgbdDatasetConfig
DATASET_CONFIG = SunrgbdDatasetConfig()
TRAIN_DATASET = SunrgbdDetectionVotesDataset('train', num_points=NUM_POINT,
augment=True,
use_color=FLAGS.use_color, use_height=(not FLAGS.no_height),
use_v1=(not FLAGS.use_sunrgbd_v2),
labeled_sample_list=FLAGS.labeled_sample_list)
TEST_DATASET = SunrgbdDetectionVotesDataset('val', num_points=NUM_POINT,
augment=False,
use_color=FLAGS.use_color, use_height=(not FLAGS.no_height),
use_v1=(not FLAGS.use_sunrgbd_v2))#, labeled_sample_list='sun_vis.txt')# single=FLAGS.vis_single)
elif FLAGS.dataset == 'scannet':
from scannet.scannet_detection_dataset import ScannetDetectionDataset, MAX_NUM_OBJ
from scannet.model_util_scannet import ScannetDatasetConfig
DATASET_CONFIG = ScannetDatasetConfig()
TRAIN_DATASET = ScannetDetectionDataset('train', num_points=NUM_POINT,
augment=True,
use_color=FLAGS.use_color, use_height=(not FLAGS.no_height),
labeled_sample_list=FLAGS.labeled_sample_list)
TEST_DATASET = ScannetDetectionDataset('val', num_points=NUM_POINT,
augment=False,
use_color=FLAGS.use_color, use_height=(not FLAGS.no_height))#, labeled_sample_list='scan_vis.txt')#
else:
print('Unknown dataset %s. Exiting...' % (FLAGS.dataset))
exit(-1)
TRAIN_DATALOADER = DataLoader(TRAIN_DATASET, batch_size=BATCH_SIZE,
shuffle=True, num_workers=4, worker_init_fn=my_worker_init_fn)
TEST_DATALOADER = DataLoader(TEST_DATASET, batch_size=BATCH_SIZE,
shuffle=False, num_workers=4, worker_init_fn=my_worker_init_fn)
# Init the model and optimzier
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
num_input_channel = int(FLAGS.use_color) * 3 + int(not FLAGS.no_height) * 1
net = Detector(num_class=DATASET_CONFIG.num_class,
num_heading_bin=DATASET_CONFIG.num_heading_bin,
num_size_cluster=DATASET_CONFIG.num_size_cluster,
mean_size_arr=DATASET_CONFIG.mean_size_arr,
dataset_config=DATASET_CONFIG,
num_proposal=FLAGS.num_target,
input_feature_dim=num_input_channel,
vote_factor=FLAGS.vote_factor,
sampling=FLAGS.cluster_sampling)
if torch.cuda.device_count() > 1:
log_string("Let's use %d GPUs!" % (torch.cuda.device_count()))
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
net = nn.DataParallel(net)
net.to(device)
# Load the Adam optimizer
optimizer = optim.Adam(net.parameters(), lr=BASE_LEARNING_RATE, weight_decay=FLAGS.weight_decay)
# Load checkpoint if there is any
it = -1 # for the initialize value of `LambdaLR` and `BNMomentumScheduler`
start_epoch = 0
if CHECKPOINT_PATH is not None and os.path.isfile(CHECKPOINT_PATH):
checkpoint = torch.load(CHECKPOINT_PATH)
net.load_state_dict(checkpoint['model_state_dict'])
if FLAGS.resume:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
log_string("-> loaded checkpoint %s (epoch: %d)" % (CHECKPOINT_PATH, start_epoch))
# Decay Batchnorm momentum from 0.5 to 0.999
# note: pytorch's BN momentum (default 0.1)= 1 - tensorflow's BN momentum
BN_MOMENTUM_INIT = 0.5
BN_MOMENTUM_MAX = 0.001
bn_lbmd = lambda it: max(BN_MOMENTUM_INIT * BN_DECAY_RATE ** (int(it / BN_DECAY_STEP)), BN_MOMENTUM_MAX)
bnm_scheduler = BNMomentumScheduler(net, bn_lambda=bn_lbmd, last_epoch=start_epoch - 1)
if FLAGS.resume:
bnm_scheduler.step(start_epoch)
def get_current_lr(epoch):
lr = BASE_LEARNING_RATE
for i, lr_decay_epoch in enumerate(LR_DECAY_STEPS):
if epoch >= lr_decay_epoch:
lr *= LR_DECAY_RATES[i]
return lr
def adjust_learning_rate(optimizer, epoch):
lr = get_current_lr(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# TFBoard Visualizers
TRAIN_VISUALIZER = TfVisualizer(FLAGS.log_dir, 'train')
TEST_VISUALIZER = TfVisualizer(FLAGS.log_dir, 'test')
# Used for AP calculation
CONFIG_DICT = {'remove_empty_box': False, 'use_3d_nms': True,
'nms_iou': 0.25, 'use_old_type_nms': False, 'cls_nms': True, 'use_iou_for_nms': False,
'per_class_proposal': True, 'conf_thresh': 0.05, 'iou_weight': FLAGS.iou_weight,
'dataset_config': DATASET_CONFIG }
print('CONFIG_DICT', CONFIG_DICT, DATASET_CONFIG)
# ------------------------------------------------------------------------- GLOBAL CONFIG END
AP_IOU_THRESHOLDS = [0.25, 0.5]
def tb_name(key):
if 'loss' in key:
return 'loss/' + key
elif 'acc' in key:
return 'acc/' + key
elif 'ratio' in key:
return 'ratio/' + key
else:
return 'other/' + key
def evaluate_one_epoch():
stat_dict = {} # collect statistics
ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \
for iou_thresh in AP_IOU_THRESHOLDS]
net.eval() # set model to eval mode (for bn and dp)
for batch_idx, batch_data_label in enumerate(TEST_DATALOADER):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}
with torch.no_grad():
end_points = net(inputs)
# Compute loss
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
loss, end_points = get_labeled_loss(end_points, DATASET_CONFIG, CONFIG_DICT)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)
for ap_calculator in ap_calculator_list:
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
# Dump evaluation results for visualization
if FLAGS.dump_results and batch_idx == 0 and EPOCH_CNT % 10 == 0:
dump_results(end_points, DUMP_DIR, DATASET_CONFIG)
# Log statistics
TEST_VISUALIZER.log_scalars({tb_name(key): stat_dict[key] / float(batch_idx + 1) for key in stat_dict},
(EPOCH_CNT + 1) * len(TRAIN_DATALOADER) * BATCH_SIZE)
for key in sorted(stat_dict.keys()):
log_string('eval mean %s: %f' % (key, stat_dict[key] / (float(batch_idx + 1))))
map = []
# Evaluate average precision
for i, ap_calculator in enumerate(ap_calculator_list):
print('-' * 10, 'iou_thresh: %f' % (AP_IOU_THRESHOLDS[i]), '-' * 10)
metrics_dict = ap_calculator.compute_metrics()
for key in metrics_dict:
log_string('eval %s: %f' % (key, metrics_dict[key]))
TEST_VISUALIZER.log_scalars(
{'metrics_' + str(AP_IOU_THRESHOLDS[i]) + '/' + key: metrics_dict[key] for key in metrics_dict if
key in ['mAP', 'AR']},
(EPOCH_CNT + 1) * len(TRAIN_DATALOADER) * BATCH_SIZE)
map.append(metrics_dict['mAP'])
mean_loss = stat_dict['loss'] / float(batch_idx + 1)
return mean_loss, map
def train_one_epoch():
stat_dict = {} # collect statistics
adjust_learning_rate(optimizer, EPOCH_CNT)
bnm_scheduler.step() # decay BN momentum
net.train() # set model to training mode
for batch_idx, batch_data_label in enumerate(TRAIN_DATALOADER):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
optimizer.zero_grad()
inputs = {'point_clouds': batch_data_label['point_clouds']}
end_points = net.forward_with_pred_jitter(inputs)
# Compute loss and gradients, update parameters.
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
loss, end_points = get_labeled_loss(end_points, DATASET_CONFIG, CONFIG_DICT)
loss.backward()
optimizer.step()
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
batch_interval = FLAGS.print_interval
if (batch_idx + 1) % batch_interval == 0:
log_string(' ---- batch: %03d ----' % (batch_idx + 1))
TRAIN_VISUALIZER.log_scalars({tb_name(key): stat_dict[key] / batch_interval for key in stat_dict},
(EPOCH_CNT * len(TRAIN_DATALOADER) + batch_idx) * BATCH_SIZE)
for key in sorted(stat_dict.keys()):
log_string('mean %s: %f' % (key, stat_dict[key] / batch_interval))
stat_dict[key] = 0
BEST_MAP = [0.0, 0.0]
def train(start_epoch):
global EPOCH_CNT
loss = 0
global BEST_MAP
EPOCH_CNT = 0
for epoch in range(start_epoch, MAX_EPOCH):
EPOCH_CNT = epoch
log_string('**** EPOCH %03d ****' % (epoch))
log_string('Current learning rate: %f' % (get_current_lr(epoch)))
log_string('Current BN decay momentum: %f' % (bnm_scheduler.lmbd(bnm_scheduler.last_epoch)))
log_string(str(datetime.now()))
# in numpy 1.18.5 this actually sets `np.random.get_state()[1][0]` to default value
# so the test data is consistent as the initial seed is the same
np.random.seed()
train_one_epoch()
if EPOCH_CNT % FLAGS.eval_interval == 0 and EPOCH_CNT > 0:
loss, map = evaluate_one_epoch()
if map[0] + map[1] > BEST_MAP[0] + BEST_MAP[1]:
BEST_MAP = map
save_dict = {'epoch': epoch + 1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = net.module.state_dict()
except:
save_dict['model_state_dict'] = net.state_dict()
torch.save(save_dict, os.path.join(LOG_DIR, 'best_checkpoint_sum.tar'))
PERFORMANCE_FOUT.write('epoch: ' + str(EPOCH_CNT) + '\n' + 'best: ' + \
str(BEST_MAP[0].item()) + ', ' + str(BEST_MAP[1].item()) + '\n')
PERFORMANCE_FOUT.flush()
# Save checkpoint
save_dict = {'epoch': epoch + 1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = net.module.state_dict()
except:
save_dict['model_state_dict'] = net.state_dict()
torch.save(save_dict, os.path.join(LOG_DIR, 'checkpoint.tar'))
if EPOCH_CNT % FLAGS.save_interval == 0:
# Save checkpoint
save_dict = {'epoch': epoch + 1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = net.module.state_dict()
except:
save_dict['model_state_dict'] = net.state_dict()
torch.save(save_dict, os.path.join(LOG_DIR, 'checkpoint_%d.tar' % EPOCH_CNT))
if __name__ == '__main__':
train(start_epoch)