-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_utils.py
48 lines (43 loc) · 1.84 KB
/
input_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#encoding:utf-8
#############################################
# FileName: input_utils
# Author: ChenDajun
# CreateTime: 2020-06-12
# Descreption: input utils
#############################################
import os, json, codecs
import tensorflow as tf
import config
FLAGS = config.FLAGS
def parse_exp(example):
features_def = dict()
features_def["label"] = tf.io.FixedLenFeature([1], tf.int64)
features_def["query_char"] = tf.io.FixedLenFeature([FLAGS.query_max_char_length], tf.int64)
features_def["doc_char"] = tf.io.FixedLenFeature([FLAGS.doc_max_char_length], tf.int64)
features = tf.io.parse_single_example(example, features_def)
label = features.pop("label")
return features, label
def train_input_fn(filenames=None,
batch_size=128,
shuffle_buffer_size=1000):
# 集群上训练需要切分数据
if FLAGS.run_on_cluster:
files_all = tf.io.gfile.Glob(filenames)
train_worker_num = len(FLAGS.worker_hosts.split(","))
hash_id = FLAGS.task_index if FLAGS.job_name == "worker" else train_worker_num - 1
files_shard = [files for i, files in enumerate(files_all) if i % train_worker_num == hash_id]
dataset = tf.data.TFRecordDataset(files_shard)
else:
files = tf.compat.v1.gfile.Glob(filenames)
dataset = tf.data.TFRecordDataset(files)
dataset = dataset.shuffle(batch_size*10)
dataset = dataset.map(parse_exp, num_parallel_calls=4)
dataset = dataset.batch(batch_size, drop_remainder=True).repeat().prefetch(1)
return dataset
def eval_input_fn(filenames=None,
batch_size=128):
files = tf.compat.v1.gfile.Glob(filenames)
dataset = tf.data.TFRecordDataset(files)
dataset = dataset.map(parse_exp, num_parallel_calls=4)
dataset = dataset.batch(batch_size, drop_remainder=True).repeat()
return dataset