-
Notifications
You must be signed in to change notification settings - Fork 4
/
cap2sg_detection.py
265 lines (221 loc) · 11 KB
/
cap2sg_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2020 Keren Ye, University of Pittsburgh
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
import numpy as np
import tensorflow as tf
from protos import model_pb2
from modeling.utils import masked_ops
from modeling.utils import box_ops
from models.cap2sg_data import DataTuple
def detect_entities(options, dt):
"""Grounds entities.
Args:
options: A Cap2SGDetection proto.
dt: A DataTuple object, served as a collection of global variables.
Returns:
dt.detection.valid_detections: Number of detections, [batch].
dt.detection.nmsed_boxes: Detection boxes, [batch, max_n_detection, 4].
dt.detection.nmsed_scores: Detection scores, [batch, max_n_detection],
dt.detection.nmsed_classes: Detection classes, [batch, max_n_detection],
dt.detection.nmsed_attribute_scores: Object attribute scores, [batch, max_n_detection].
dt.detection.nmsed_attribute_classes: Object attribute class, [batch_max_n_detection].
dt.refined_grounding.entity_proposal_id: Grounding vector, the ``g'' vector in our paper, [batch, max_n_entity].
dt.refined_grounding.entity_proposal_box: Grounded boxes, [batch, max_n_entity, 4],
dt.refined_grounding.entity_proposal_score: Grounding scores, [batch, max_n_entity]
dt.refined_grounding.entity_proposal_feature: Grounded features, [batch, max_n_entity, vdims]
"""
if not isinstance(options, model_pb2.Cap2SGDetection):
raise ValueError('Options has to be a Cap2SGDetection proto.')
if not isinstance(dt, DataTuple):
raise ValueError('Invalid DataTuple object.')
# Compute proposal iou.
propogation_matrix = tf.cast(
dt.proposal_iou > options.grounding_iou_threshold, tf.float32)
# Compute detection labels.
dt.detection_instance_labels_list = []
dt.detection_instance_logits_list = []
dt.detection_instance_scores_list = []
entity_proposal_id = dt.grounding.entity_proposal_id
for itno in range(options.num_iterations):
detection_instance_labels = _scatter_entity_labels(
proposal_id=entity_proposal_id,
entity_id=dt.entity_ids,
max_n_proposal=dt.max_n_proposal,
vocab_size=dt.vocab_size)
detection_instance_labels = tf.matmul(propogation_matrix,
detection_instance_labels)
dt.detection_instance_labels_list.append(detection_instance_labels)
# Predict detection scores.
detection_head = tf.layers.Dense(dt.dims,
kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.01),
name='entity_detection_head_%i' % itno)(
dt.proposal_features)
(detection_instance_logits,
detection_instance_scores) = _box_classify(detection_head, dt.embeddings,
dt.bias_entity)
dt.detection_instance_logits_list.append(detection_instance_logits)
dt.detection_instance_scores_list.append(detection_instance_scores)
# Update the proposal id associated to the image-level entity label.
# I.e., update the ``g'' vector in the paper.
dummy_attention = tf.gather_nd(tf.transpose(detection_instance_scores,
[0, 2, 1]),
indices=_get_full_indices(dt.entity_ids))
entity_proposal_id = tf.math.argmax(dummy_attention,
axis=2,
output_type=tf.int32)
# Compute attribute labels.
if options.predict_attributes:
dt.attribute_instance_labels = _scatter_attribute_labels(
dt.grounding.entity_proposal_id, dt.per_ent_att_ids, dt.max_n_proposal,
dt.vocab_size)
attribute_head = tf.layers.Dense(dt.dims,
kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.01),
name='attribute_detection_head')(
dt.proposal_features)
(dt.attribute_instance_logits,
dt.attribute_instance_scores) = _box_classify(attribute_head,
dt.embeddings,
dt.bias_attribute)
# Save the grounding results.
dt.refined_grounding.entity_proposal_id = entity_proposal_id
dt.refined_grounding.entity_proposal_score = tf.reduce_max(
dummy_attention, 2)
indices = _get_full_indices(entity_proposal_id)
dt.refined_grounding.entity_proposal_box = tf.gather_nd(
dt.proposals, indices)
dt.refined_grounding.entity_proposal_feature = tf.gather_nd(
dt.proposal_features, indices)
# Postprocess: non-maximum-suppression.
post_process = options.post_process
(dt.detection.nmsed_boxes, dt.detection.nmsed_scores,
dt.detection.nmsed_classes,
dt.detection.valid_detections) = tf.image.combined_non_max_suppression(
tf.expand_dims(dt.proposals, 2),
detection_instance_scores[:, :, 1:],
max_output_size_per_class=post_process.max_size_per_class,
max_total_size=post_process.max_total_size,
iou_threshold=post_process.iou_thresh,
score_threshold=post_process.score_thresh)
dt.detection.nmsed_classes = tf.cast(
1 + dt.detection.nmsed_classes, tf.int32)
# Get the proposal id of the detection box, then fetch the other information.
iou = _compute_iou(dt.detection.valid_detections, dt.detection.nmsed_boxes,
dt.n_proposal, dt.proposals)
dt.detection.nmsed_proposal_id = tf.math.argmax(iou,
axis=2,
output_type=tf.int32)
indices = _get_full_indices(dt.detection.nmsed_proposal_id)
dt.detection.nmsed_features = tf.gather_nd(dt.proposal_features, indices)
# nmsed_attribute = tf.gather_nd(dt.attribute_instance_scores, indices)
# dt.detection.nmsed_attribute_scores = tf.reduce_max(nmsed_attribute, -1)
# dt.detection.nmsed_attribute_classes = tf.argmax(nmsed_attribute,
# axis=2,
# output_type=tf.int32)
return dt
def _get_full_indices(index):
"""Gets full indices from a single index.
Args:
index: A single index, a [batch, max_n_elem] int tensor.
Returns:
indices: Full indices with batch dimension added.
"""
batch, max_n_elem = index.shape[0].value, index.shape[1].value
if max_n_elem is None:
max_n_elem = tf.shape(index)[1]
batch_index = tf.broadcast_to(tf.expand_dims(tf.range(batch), 1),
[batch, max_n_elem])
return tf.stack([batch_index, index], -1)
def _box_classify(detection_head, embeddings, bias, normalize_fn=tf.nn.softmax):
"""Predicts classes based on the detection head.
Args:
detection_head: A [batch, max_n_proposal, dims] float tensor.
embeddings: Embedding matrix, a [vocab_size, dims] float tensor.
bias: A [vocab_size] float tensor.
normalize_fn: Function to normalize scores.
Returns:
detection_logits: Logits tensor, a [batch, max_n_proposal, vocab_size]
float tensor.
detection_scores: Normalized scores, a [batch, max_n_proposal, vocab_size]
float tensor.
"""
detection_logits = tf.matmul(detection_head, embeddings, transpose_b=True)
detection_logits = tf.nn.bias_add(detection_logits, bias)
detection_scores = normalize_fn(detection_logits)
# Set background scores to zeros; note the logits still contain background.
batch = detection_head.shape[0].value
max_n_proposal = tf.shape(detection_head)[1]
detection_scores = tf.concat(
[tf.zeros([batch, max_n_proposal, 1]), detection_scores[:, :, 1:]], -1)
return detection_logits, detection_scores
def _compute_iou(n_box1, box1, n_box2, box2):
"""Computes the IoU between two sets of boxes.
Args:
n_box1: A [batch] int tensor.
box1: A [batch, max_n_box1, 4] float tensor.
n_box2: A [batch] int tensor.
box2: A [batch, max_n_box2, 4] float tensor.
Returns:
iou: A [batch, max_n_box1, max_n_box2] float tensor.
"""
mask1 = tf.sequence_mask(n_box1, maxlen=tf.shape(box1)[1], dtype=tf.float32)
mask2 = tf.sequence_mask(n_box2, maxlen=tf.shape(box2)[1], dtype=tf.float32)
mask = tf.multiply(tf.expand_dims(mask1, 2), tf.expand_dims(mask2, 1))
iou = box_ops.iou(tf.expand_dims(box1, 2), tf.expand_dims(box2, 1))
return tf.multiply(iou, mask)
def _scatter_entity_labels(proposal_id, entity_id, max_n_proposal, vocab_size):
"""Creates entity labels from pseudo instances.
Args:
proposal_id: A [batch, max_n_node] int tensor, denoting the proposal index.
entity_id: A [batch, max_n_node] int tensor, values are in [0, vocab_size).
max_n_proposal: Maximum number of proposals.
vocab_size: Size of the vocabulary.
Returns:
A [batch, max_n_proposal, vocab_size] tensor.
"""
batch = proposal_id.shape[0].value
max_n_node = tf.shape(entity_id)[1]
index_batch = tf.broadcast_to(tf.expand_dims(tf.range(batch), 1),
[batch, max_n_node])
index_full = tf.stack([index_batch, proposal_id, entity_id], -1)
return tf.scatter_nd(index_full,
updates=tf.fill([batch, max_n_node], 1.0),
shape=[batch, max_n_proposal, vocab_size])
def _scatter_attribute_labels(proposal_id, attribute_id, max_n_proposal,
vocab_size):
"""Create attribute labels from pseudo instances.
Args:
proposal_id: A [batch, max_n_node] int tensor, denoting the proposal index.
attribute_id: A [batch, max_n_node, max_n_attribute] int tensor, values are in [0, vocab_size).
max_n_proposal: Maximum number of proposals.
vocab_size: Size of the vocabulary.
Returns:
A [batch, max_n_proposal, vocab_size] tensor.
"""
batch = proposal_id.shape[0].value
max_n_node = tf.shape(proposal_id)[1]
attribute_labels = tf.reduce_max(tf.one_hot(attribute_id, depth=vocab_size),
2)
attribute_labels = tf.concat(
[tf.zeros([batch, max_n_node, 1]), attribute_labels[:, :, 1:]], -1)
index_batch = tf.broadcast_to(tf.expand_dims(tf.range(batch), 1),
[batch, max_n_node])
return tf.scatter_nd(tf.stack([index_batch, proposal_id], -1),
updates=attribute_labels,
shape=[batch, max_n_proposal, vocab_size])