-
Notifications
You must be signed in to change notification settings - Fork 0
/
another_version
249 lines (201 loc) · 12.5 KB
/
another_version
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# -*- coding: utf-8 -*-
"""
Energy Based Generative Adversarial Networks (EBGAN): https://arxiv.org/pdf/1609.03126v2.pdf
<blog.topspeedsnail.com>
由于我把Python升级到了3.6破坏了开发环境, 暂时先使用Python 2.7
"""
import os
import random
import numpyas np
import tensorflowas tf
import cv2
import scipy.miscas misc
CELEBA_DATE_DIR= 'img_align_celeba'
train_images = []
for image_filenamein os.listdir(CELEBA_DATE_DIR):
if image_filename.endswith('.jpg'):
train_images.append(os.path.join(CELEBA_DATE_DIR, image_filename))
random.shuffle(train_images)
batch_size = 64
num_batch = len(train_images) // batch_size
# 图像大小和channel
IMAGE_SIZE = 64
IMAGE_CHANNEL = 3
def get_next_batch(pointer):
image_batch = []
images = train_images[pointer*batch_size:(pointer+1)*batch_size]
for imgin images:
image = cv2.imread(img)
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
image = image.astype('float32') / 127.5 - 1
image_batch.append(image)
return image_batch
# noise
z_dim = 100
noise = tf.placeholder(tf.float32, [None, z_dim], name='noise')
X = tf.placeholder(tf.float32, [batch_size, IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL], name='X')
# 是否在训练阶段
train_phase = tf.placeholder(tf.bool)
# http://stackoverflow.com/a/34634291/2267819
def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5):
with tf.variable_scope(scope):
#beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
#gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
return normed
# 重用变量出了点问题, 先用dict
generator_variables_dict = {
"W_1": tf.Variable(tf.truncated_normal([z_dim, 2 * IMAGE_SIZE * IMAGE_SIZE], stddev=0.02), name='Generator/W_1'),
"b_1": tf.Variable(tf.constant(0.0, shape=[2 * IMAGE_SIZE * IMAGE_SIZE]), name='Generator/b_1'),
'beta_1': tf.Variable(tf.constant(0.0, shape=[512]), name='Generator/beta_1'),
'gamma_1': tf.Variable(tf.random_normal(shape=[512], mean=1.0, stddev=0.02), name='Generator/gamma_1'),
"W_2": tf.Variable(tf.truncated_normal([5, 5, 256, 512], stddev=0.02), name='Generator/W_2'),
"b_2": tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/b_2'),
'beta_2': tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/beta_2'),
'gamma_2': tf.Variable(tf.random_normal(shape=[256], mean=1.0, stddev=0.02), name='Generator/gamma_2'),
"W_3": tf.Variable(tf.truncated_normal([5, 5, 128, 256], stddev=0.02), name='Generator/W_3'),
"b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/b_3'),
'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/beta_3'),
'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Generator/gamma_3'),
"W_4": tf.Variable(tf.truncated_normal([5, 5, 64, 128], stddev=0.02), name='Generator/W_4'),
"b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/b_4'),
'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/beta_4'),
'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Generator/gamma_4'),
"W_5": tf.Variable(tf.truncated_normal([5, 5, IMAGE_CHANNEL, 64], stddev=0.02), name='Generator/W_5'),
"b_5": tf.Variable(tf.constant(0.0, shape=[IMAGE_CHANNEL]), name='Generator/b_5')
}
# Generator
def generator(noise):
with tf.variable_scope("Generator"):
out_1 = tf.matmul(noise, generator_variables_dict["W_1"]) + generator_variables_dict['b_1']
out_1 = tf.reshape(out_1, [-1, IMAGE_SIZE//16, IMAGE_SIZE//16, 512])
out_1 = batch_norm(out_1, generator_variables_dict["beta_1"], generator_variables_dict["gamma_1"], train_phase, scope='bn_1')
out_1 = tf.nn.relu(out_1, name='relu_1')
out_2 = tf.nn.conv2d_transpose(out_1, generator_variables_dict['W_2'], output_shape=tf.pack([tf.shape(out_1)[0], IMAGE_SIZE//8, IMAGE_SIZE//8, 256]), strides=[1, 2, 2, 1], padding='SAME')
out_2 = tf.nn.bias_add(out_2, generator_variables_dict['b_2'])
out_2 = batch_norm(out_2, generator_variables_dict["beta_2"], generator_variables_dict["gamma_2"], train_phase, scope='bn_2')
out_2 = tf.nn.relu(out_2, name='relu_2')
out_3 = tf.nn.conv2d_transpose(out_2, generator_variables_dict['W_3'], output_shape=tf.pack([tf.shape(out_2)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 128]), strides=[1, 2, 2, 1], padding='SAME')
out_3 = tf.nn.bias_add(out_3, generator_variables_dict['b_3'])
out_3 = batch_norm(out_3, generator_variables_dict["beta_3"], generator_variables_dict["gamma_3"], train_phase, scope='bn_3')
out_3 = tf.nn.relu(out_3, name='relu_3')
out_4 = tf.nn.conv2d_transpose(out_3, generator_variables_dict['W_4'], output_shape=tf.pack([tf.shape(out_3)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 64]), strides=[1, 2, 2, 1], padding='SAME')
out_4 = tf.nn.bias_add(out_4, generator_variables_dict['b_4'])
out_4 = batch_norm(out_4, generator_variables_dict["beta_4"], generator_variables_dict["gamma_4"], train_phase, scope='bn_4')
out_4 = tf.nn.relu(out_4, name='relu_4')
out_5 = tf.nn.conv2d_transpose(out_4, generator_variables_dict['W_5'], output_shape=tf.pack([tf.shape(out_4)[0], IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL]), strides=[1, 2, 2, 1], padding='SAME')
out_5 = tf.nn.bias_add(out_5, generator_variables_dict['b_5'])
out_5 = tf.nn.tanh(out_5, name='tanh_5')
return out_5
discriminator_variables_dict = {
"W_1": tf.Variable(tf.truncated_normal([4, 4, IMAGE_CHANNEL, 32], stddev=0.002), name='Discriminator/W_1'),
"b_1": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_1'),
'beta_1': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_1'),
'gamma_1': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_1'),
"W_2": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_2'),
"b_2": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_2'),
'beta_2': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_2'),
'gamma_2': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_2'),
"W_3": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_3'),
"b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/b_3'),
'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/beta_3'),
'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Discriminator/gamma_3'),
"W_4": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_4'),
"b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_4'),
'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_4'),
'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_4'),
"W_5": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_5'),
"b_5": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_5'),
'beta_5': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_5'),
'gamma_5': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_5'),
"W_6": tf.Variable(tf.truncated_normal([4, 4, 3, 32], stddev=0.002), name='Discriminator/W_6'),
"b_6": tf.Variable(tf.constant(0.0, shape=[3]), name='Discriminator/b_6')
}
# Discriminator
def discriminator(input_images):
with tf.variable_scope("Discriminator"):
# Encoder
out_1 = tf.nn.conv2d(input_images, discriminator_variables_dict['W_1'], strides=[1, 2, 2, 1], padding='SAME')
out_1 = tf.nn.bias_add(out_1, discriminator_variables_dict['b_1'])
out_1 = batch_norm(out_1, discriminator_variables_dict['beta_1'], discriminator_variables_dict['gamma_1'], train_phase, scope='bn_1')
out_1 = tf.maximum(0.2 * out_1, out_1, 'leaky_relu_1')
out_2 = tf.nn.conv2d(out_1, discriminator_variables_dict['W_2'], strides=[1, 2, 2, 1], padding='SAME')
out_2 = tf.nn.bias_add(out_2, discriminator_variables_dict['b_2'])
out_2 = batch_norm(out_2, discriminator_variables_dict['beta_2'], discriminator_variables_dict['gamma_2'], train_phase, scope='bn_2')
out_2 = tf.maximum(0.2 * out_2, out_2, 'leaky_relu_2')
out_3 = tf.nn.conv2d(out_2, discriminator_variables_dict['W_3'], strides=[1, 2, 2, 1], padding='SAME')
out_3 = tf.nn.bias_add(out_3, discriminator_variables_dict['b_3'])
out_3 = batch_norm(out_3, discriminator_variables_dict['beta_3'], discriminator_variables_dict['gamma_3'], train_phase, scope='bn_3')
out_3 = tf.maximum(0.2 * out_3, out_3, 'leaky_relu_3')
encode = tf.reshape(out_3, [-1, 2*IMAGE_SIZE*IMAGE_SIZE])
# Decoder
out_3 = tf.reshape(encode, [-1, IMAGE_SIZE//8, IMAGE_SIZE//8, 128])
out_4 = tf.nn.conv2d_transpose(out_3, discriminator_variables_dict['W_4'], output_shape=tf.pack([tf.shape(out_3)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 64]), strides=[1, 2, 2, 1], padding='SAME')
out_4 = tf.nn.bias_add(out_4, discriminator_variables_dict['b_4'])
out_4 = batch_norm(out_4, discriminator_variables_dict['beta_4'], discriminator_variables_dict['gamma_4'], train_phase, scope='bn_4')
out_4 = tf.maximum(0.2 * out_4, out_4, 'leaky_relu_4')
out_5 = tf.nn.conv2d_transpose(out_4, discriminator_variables_dict['W_5'], output_shape=tf.pack([tf.shape(out_4)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 32]), strides=[1, 2, 2, 1], padding='SAME')
out_5 = tf.nn.bias_add(out_5, discriminator_variables_dict['b_5'])
out_5 = batch_norm(out_5, discriminator_variables_dict['beta_5'], discriminator_variables_dict['gamma_5'], train_phase, scope='bn_5')
out_5 = tf.maximum(0.2 * out_5, out_5, 'leaky_relu_5')
out_6 = tf.nn.conv2d_transpose(out_5, discriminator_variables_dict['W_6'], output_shape=tf.pack([tf.shape(out_5)[0], IMAGE_SIZE, IMAGE_SIZE, 3]), strides=[1, 2, 2, 1], padding='SAME')
out_6 = tf.nn.bias_add(out_6, discriminator_variables_dict['b_6'])
decoded = tf.nn.tanh(out_6, name="tanh_6")
return encode, decoded
# mean squared errors
_, real_decoded = discriminator(X)
real_loss = tf.sqrt(2 * tf.nn.l2_loss(real_decoded - X)) / batch_size
fake_image = generator(noise)
_, fake_decoded = discriminator(fake_image)
fake_loss = tf.sqrt(2 * tf.nn.l2_loss(fake_decoded - fake_image)) / batch_size
# loss
# D_loss = real_loss + tf.maximum(1 - fake_loss, 0)
margin = 20
D_loss = margin - fake_loss + real_loss
G_loss = fake_loss # no pt
def optimizer(loss, d_or_g):
optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.5)
#print([v.name for v in tf.trainable_variables() if v.name.startswith(d_or_g)])
var_list = [v for v in tf.trainable_variables() if v.name.startswith(d_or_g)]
gradient = optim.compute_gradients(loss, var_list=var_list)
return optim.apply_gradients(gradient)
train_op_G = optimizer(G_loss, 'Generator')
train_op_D = optimizer(D_loss, 'Discriminator')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer(), feed_dict={train_phase: True})
saver = tf.train.Saver()
# 恢复前一次训练
ckpt = tf.train.get_checkpoint_state('.')
if ckpt != None:
print(ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print("没找到模型")
step = 0
for i in range(40):
for j in range(num_batch):
batch_noise = np.random.uniform(-1.0, 1.0, size=[batch_size, z_dim]).astype(np.float32)
d_loss, _ = sess.run([D_loss, train_op_D], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
print(step, d_loss, g_loss)
# 保存模型并生成图像
if step % 100 == 0:
saver.save(sess, "celeba.model", global_step=step)
test_noise = np.random.uniform(-1.0, 1.0, size=(5, z_dim)).astype(np.float32)
images = sess.run(fake_image, feed_dict={noise: test_noise, train_phase: False})
for k in range(5):
image = images[k, :, :, :]
image += 1
image *= 127.5
image = np.clip(image, 0, 255).astype(np.uint8)
image = np.reshape(image, (IMAGE_SIZE, IMAGE_SIZE, -1))
misc.imsave('fake_image' + str(step) + str(k) + '.jpg', image)
step += 1