-
Notifications
You must be signed in to change notification settings - Fork 6
/
tfidf.py
197 lines (161 loc) · 6.33 KB
/
tfidf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
# encoding: utf-8
"""
File: tfidf.py
Author: Yasser Ebrahim
Date: Oct 2012
Generate the TF-IDF ratings for a collection of documents.
This script will also tokenize the input files to extract words (removes punctuation and puts all in
lower case), and it will use the NLTK library to lemmatize words (get rid of stemmings)
IMPORTANT:
A REQUIRED library for this script is NLTK, please make sure it's installed along with the wordnet
corpus before trying to run this script
Usage:
- Create a file to hold the paths+names of all your documents (in the example shown: input_files.txt)
- Make sure you have the full paths to the files listed in the file above each on a separate line
- For now, the documents are only collections of text, no HTML, XML, RDF, or any other format
- Simply run this script file with your input file as a single parameter, for example:
python tfidf.py input_files.txt
- This script will generate new files, one for each of the input files, with the suffix "_tfidf"
which contains terms with corresponding tfidf score, each on a separate line
"""
# a list of (words-freq) pairs for each document
global_terms_in_doc = {}
# list to hold occurrences of terms across documents
global_term_freq = {}
num_docs = 0
lang = 'english'
lang_dictionary = {}
top_k = -1
supported_langs = ('english', 'french')
# support for custom language if needed
def loadLanguageLemmas(filePath):
print('loading language from file: ' + filePath)
f = open(filePath)
for line in f:
words = line.split()
if words[1] == '=' or words[0] == words[1]:
continue
lang_dictionary[words[0]] = words[1]
def remove_diacritic(words):
for i in range(len(words)):
w = unicode(words[i], 'ISO-8859-1')
w = unicodedata.normalize('NFKD', w).encode('ASCII', 'ignore')
words[i] = w.lower()
return words
# function to tokenize text, and put words back to their roots
def tokenize(text):
text = ' '.join(text)
tokens = PunktWordTokenizer().tokenize(text)
# lemmatize words. try both noun and verb lemmatizations
lmtzr = WordNetLemmatizer()
for i in range(0,len(tokens)):
#tokens[i] = tokens[i].strip("'")
if lang != 'english':
if tokens[i] in lang_dictionary:
tokens[i] = lang_dictionary[tokens[i]]
else:
res = lmtzr.lemmatize(tokens[i])
if res == tokens[i]:
tokens[i] = lmtzr.lemmatize(tokens[i], 'v')
else:
tokens[i] = res
# don't return any single letters
tokens = [t for t in tokens if len(t) > 1 and not t.isdigit()]
return tokens
def remove_stopwords(text):
# remove punctuation
chars = ['.', '/', "'", '"', '?', '!', '#', '$', '%', '^', '&',
'*', '(', ')', ' - ', '_', '+' ,'=', '@', ':', '\\', ',',
';', '~', '`', '<', '>', '|', '[', ']', '{', '}', '–', '“',
'»', '«', '°', '’']
for c in chars:
text = text.replace(c, ' ')
text = text.split()
import nltk
if lang == 'english':
stopwords = nltk.corpus.stopwords.words('english')
else:
stopwords = open(lang + '_stopwords.txt', 'r').read().split()
content = [w for w in text if w.lower().strip() not in stopwords]
return content
# __main__ execution
import sys, re, math, unicodedata
from optparse import OptionParser
parser = OptionParser(usage='usage: %prog [options] input_file')
parser.add_option('-l', '--language', dest='language',
help='language to use in tokenizing and lemmatizing. supported\
languages: {english, french}', metavar='LANGUAGE')
parser.add_option('-k', '--top-k', dest='top_k',
help='output only terms with score no less k')
parser.add_option('-m', '--mode', dest='mode',
help='display mode. can be either "both" or "term"')
(options, args) = parser.parse_args()
if options.language:
if options.language not in supported_langs:
print 'only ', supported_langs, ' are supported in this version.'
quit()
if options.language != 'english':
lang = options.language
loadLanguageLemmas(options.language + '_lemmas.txt')
if options.top_k:
top_k = int(options.top_k)
display_mode = 'both'
if options.mode:
if options.mode == 'both' or options.mode == 'term':
display_mode = options.mode
else:
parser.print_help()
if not args:
parser.print_help()
quit()
reader = open(args[0])
all_files = reader.read().splitlines()
num_docs = len(all_files)
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tokenize.punkt import PunktWordTokenizer
print('initializing..')
for f in all_files:
# local term frequency map
terms_in_doc = {}
doc_words = open(f).read().lower()
#print 'words:\n', doc_words
doc_words = remove_stopwords(doc_words)
#print 'after stopwords:\n', doc_words
doc_words = tokenize(doc_words)
#print 'after tokenize:\n', doc_words
#quit()
# increment local count
for word in doc_words:
if word in terms_in_doc:
terms_in_doc[word] += 1
else:
terms_in_doc[word] = 1
# increment global frequency
for (word,freq) in terms_in_doc.items():
if word in global_term_freq:
global_term_freq[word] += 1
else:
global_term_freq[word] = 1
global_terms_in_doc[f] = terms_in_doc
print('working through documents.. ')
for f in all_files:
writer = open(f + '_tfidf', 'w')
result = []
# iterate over terms in f, calculate their tf-idf, put in new list
max_freq = 0;
for (term,freq) in global_terms_in_doc[f].items():
if freq > max_freq:
max_freq = freq
for (term,freq) in global_terms_in_doc[f].items():
idf = math.log(float(1 + num_docs) / float(1 + global_term_freq[term]))
tfidf = float(freq) / float(max_freq) * float(idf)
result.append([tfidf, term])
# sort result on tfidf and write them in descending order
result = sorted(result, reverse=True)
for (tfidf, term) in result[:top_k]:
if display_mode == 'both':
writer.write(term + '\t' + str(tfidf) + '\n')
else:
writer.write(term + '\n')
print('success, with ' + str(num_docs) + ' documents.')