-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
39 lines (31 loc) · 1.18 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import json
import pickle
from flask import Flask, request,app,jsonify, url_for, render_template
import numpy as np
import pandas as pd
app = Flask(__name__)
## Load the model
rgmodel = pickle.load(open('regmodel.pkl' , 'rb'))
scalar=pickle.load(open('scaling.pkl','rb'))
@app.route('/')
def home():
return render_template('home.html')
@app.route('/predict_api', methods = ['POST'] )
def predict_api():
data = request.json['data']
print(data)
print(np.array(list(data.values())).reshape(1,-1))
new_data = scalar.transform(np.array(list(data.values())).reshape(1,-1))
output = rgmodel.predict(new_data)
print(output[0])
return jsonify(output[0])
@app.route('/predict', methods = ['POST'] )
def predict():
data = [float(x) for x in request.form.values()]
final_input = scalar.transform(np.array(data).reshape(1,-1))
print(final_input)
output = rgmodel.predict(final_input)[0]
return render_template("home.html", prediction_text = "The House price prediction is {}".format(output))
if __name__ == "__main__":
app.run(debug=True)
#with heroku use Gunicorn(Green) because it is a pure python http server with wsgi app it allows run py concurrently