Skip to content

Latest commit

 

History

History
192 lines (129 loc) · 9.21 KB

07_leaderboards.md

File metadata and controls

192 lines (129 loc) · 9.21 KB

Leaderboards

The leaderboard includes the best performing GNN models on each datasets, in order, with their scores and the number of trainable parameters.

1. PATTERN - Node Classification

Models with configs having 500k trainable parameters

Rank Model #Params Test Acc ± s.d. Links
1 GatedGCN-PE 505421 86.363 ± 0.127 Paper
2 RingGNN 504766 86.244 ± 0.025 Paper
3 MoNet 511487 85.582 ± 0.038 Paper
4 GatedGCN 502223 85.568 ± 0.088 Paper
5 GIN 508574 85.387 ± 0.136 Paper
6 3WLGNN 502872 85.341 ± 0.207 Paper
7 GAT 526990 78.271 ± 0.186 Paper
8 GCN 500823 71.892 ± 0.334 Paper
9 GraphSage 502842 50.492 ± 0.001 Paper

2. CLUSTER - Node Classification

Models with configs having 500k trainable parameters

Rank Model #Params Test Acc ± s.d. Links
1 GatedGCN-PE 503473 74.088 ± 0.344 Paper
2 GatedGCN 502615 73.840 ± 0.326 Paper
3 GAT 527874 70.587 ± 0.447 Paper
4 GCN 501687 68.498 ± 0.976 Paper
5 MoNet 511999 66.407 ± 0.540 Paper
6 GIN 517570 64.716 ± 1.553 Paper
7 GraphSage 503350 63.844 ± 0.110 Paper
8 3WLGNN 507252 55.489 ± 7.863 Paper
9 RingGNN 524202 22.340 ± 0.000 Paper

3. ZINC - Graph Regression

Models with configs having 500k trainable parameters

Rank Model #Params Test MAE ± s.d. Links
1 PNA 387155 0.142 ± 0.010 Paper, Code
2 MPNN (sum) 480805 0.145 ± 0.007 Paper, Code
3 GatedGCN-PE 505011 0.214 ± 0.006 Paper
4 MPNN (max) 480805 0.252 ± 0.009 Paper, Code
5 GatedGCN-E 504309 0.282 ± 0.015 Paper
6 MoNet 504013 0.292 ± 0.006 Paper
7 3WLGNN-E 507603 0.303 ± 0.068 Paper
8 RingGNN-E 527283 0.353 ± 0.019 Paper
9 GCN 505079 0.367 ± 0.011 Paper
10 GAT 531345 0.384 ± 0.007 Paper
11 GraphSage 505341 0.398 ± 0.002 Paper
12 GIN 509549 0.526 ± 0.051 Paper

4. MNIST - Graph Classification

Models with configs having 100k trainable parameters

Rank Model #Params Test Acc ± s.d. Links
1 PNA 119812 97.940 ± 0.120 Paper, Code
2 MPNN (max) 109057 97.690 ± 0.220 Paper, Code
3 GatedGCN 104217 97.340 ± 0.143 Paper
4 GraphSage 104337 97.312 ± 0.097 Paper
5 MPNN (sum) 109057 96.900 ± 0.150 Paper, Code
6 GIN 105434 96.485 ± 0.252 Paper
7 GAT 110400 95.535 ± 0.205 Paper
8 3WLGNN 108024 95.075 ± 0.961 Paper
9 MoNet 104049 90.805 ± 0.032 Paper
10 GCN 101365 90.705 ± 0.218 Paper
11 RingGNN 105398 11.350 ± 0.000 Paper

Models with configs having 500k trainable parameters for 3WLGNN and RingGNN

Rank Model #Params Test Acc ± s.d. Links
1 3WLGNN 501690 95.002 ± 0.419 Paper
2 RingGNN 505182 91.860 ± 0.449 Paper

5. CIFAR10 - Graph Classification

Models with configs having 100k trainable parameters

Rank Model #Params Test Acc ± s.d. Links
1 MPNN (max) 109277 70.860 ± 0.270 Paper, Code
2 PNA 113472 70.350 ± 0.630 Paper, Code
3 GatedGCN 104357 67.312 ± 0.311 Paper
4 GraphSage 104517 65.767 ± 0.308 Paper
5 MPNN (sum) 109277 65.610 ± 0.300 Paper, Code
6 GAT 110704 64.223 ± 0.455 Paper
7 3WLGNN 108516 59.175 ± 1.593 Paper
8 GCN 101657 55.710 ± 0.381 Paper
9 GIN 105654 55.255 ± 1.527 Paper
10 MoNet 104229 54.655 ± 0.518 Paper
11 RingGNN 105165 19.300 ± 16.108 Paper

Models with configs having 500k trainable parameters for 3WLGNN and RingGNN

Rank Model #Params Test Acc ± s.d. Links
1 3WLGNN 502770 58.043 ± 2.512 Paper
2 RingGNN 504949 39.165 ± 17.114 Paper

6. TSP - Edge Classification/Link Prediction

Models with configs having 100k trainable parameters

Rank Model #Params Test F1 ± s.d. Links
1 GatedGCN-E 97858 0.808 ± 0.003 Paper
2 GatedGCN 97858 0.791 ± 0.003 Paper
3 3WLGNN-E 106366 0.694 ± 0.073 Paper
4 k-NN baseline NA(k=2) 0.693 ± 0.000 Paper
5 GAT 96182 0.671 ± 0.002 Paper
6 GraphSage 99263 0.665 ± 0.003 Paper
7 GIN 99002 0.656 ± 0.003 Paper
8 RingGNN-E 106862 0.643 ± 0.024 Paper
9 MoNet 99007 0.641 ± 0.002 Paper
10 GCN 95702 0.630 ± 0.001 Paper

Models with configs having 500k trainable parameters

Rank Model #Params Test F1 ± s.d. Links
1 GatedGCN-E 500770 0.838 ± 0.002 Paper
2 RingGNN-E 507938 0.704 ± 0.003 Paper
3 k-NN baseline NA(k=2) 0.693 ± 0.000 Paper
4 3WLGNN-E 506681 0.288 ± 0.311 Paper

7. OGBL-COLLAB - Edge Classification/Link Prediction

Models with configs having 40k trainable parameters

Rank Model #Params Test Hits@50 ± s.d. Links
1 GatedGCN 40965 52.816 ± 1.303 Paper
2 GatedGCN-PE 42769 52.018 ± 1.178 Paper
3 GraphSage 39856 51.618 ± 0.690 Paper
4 GAT 42637 51.501 ± 0.962 Paper
5 GCN 40479 50.422 ± 1.131 Paper
6 GatedGCN-E 40965 49.212 ± 1.560 Paper
7 MatrixFact baseline - 44.206 ± 0.452 Paper
8 GIN 39544 41.730 ± 2.284 Paper
9 MoNet 39751 36.144 ± 2.191 Paper

Note for OGBL-COLLAB

  • 40k params is the highest we could fit the single OGBL-COLLAB graph on GPU for fair comparisons.
  • RingGNN and 3WLGNN rely on dense tensors which leads to OOM on both GPU and CPU memory.