-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathutils.py
162 lines (133 loc) · 5.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import tensorflow as tf
import numpy as np
import skimage.data
from PIL import Image, ImageDraw, ImageFont
import math
from tensorflow.python.platform import gfile
import scipy.misc
import glob
import ntpath
from os import path
# **********************************************************************************************************
def write_matrix_txt(a,filename):
mat = np.matrix(a)
with open(filename,'wb') as f:
for line in mat:
np.savetxt(f, line, fmt='%.5f')
# **********************************************************************************************************
def get_origin_scaling(bbs, IMAGE_HEIGHT):
Bsz = np.shape(bbs)[0]
batch_origin = []
batch_scaling = []
for i in range(Bsz):
bb1_t = bbs[i,...] - 1
bbc1_t = bb1_t[2:4,0:3]
origin = np.multiply([bb1_t[1,0]-bbc1_t[1,0],bb1_t[0,0]-bbc1_t[0,0]],2)
squareSize = np.maximum(bb1_t[0,1]-bb1_t[0,0]+1,bb1_t[1,1]-bb1_t[1,0]+1);
scaling = [np.multiply(np.true_divide(squareSize,IMAGE_HEIGHT),2)]
batch_origin.append(origin)
batch_scaling.append(scaling)
batch_origin = np.array(batch_origin,dtype='f')
batch_scaling = np.array(batch_scaling,dtype='f')
O = np.zeros((Bsz,1,2),dtype='f')
O = batch_origin
S = np.zeros((Bsz,1),dtype='f')
S = batch_scaling
return O, S
# **********************************************************************************************************
def read_test_data(data_main_path,data_name,IMAGE_HEIGHT,IMAGE_WIDTH):
image_path = data_main_path +"/" + data_name + "_img.png"
mask_path = data_main_path +"/" + data_name + "_mask.png"
dp_path = data_main_path +"/" + data_name + "_dp.png"
color = np.array(scipy.misc.imread(image_path),dtype='f')
mask = np.array(scipy.misc.imread(mask_path),dtype='f')
dp = np.array(scipy.misc.imread(dp_path),dtype='f')
X = np.zeros((1,IMAGE_HEIGHT,IMAGE_WIDTH,3),dtype='f')
X[0,...] = color
Z = np.zeros((1,IMAGE_HEIGHT,IMAGE_WIDTH,1),dtype='f')
Z[0,...,0] = mask>100
DP = np.zeros((1,IMAGE_HEIGHT,IMAGE_WIDTH,3),dtype='f')
DP[0,...] = dp
Z2C3 = np.zeros((1,IMAGE_HEIGHT,IMAGE_WIDTH,3),dtype='b')
Z2C3[...,0]=Z[...,0]
Z2C3[...,1]=Z[...,0]
Z2C3[...,2]=Z[...,0]
X = np.where(Z2C3,X,np.ones_like(X)*255.0)
Z3 = Z2C3
# camera
C = np.zeros((3,4),dtype='f')
C[0,0]=1
C[1,1]=1
C[2,2]=1
R = np.zeros((3,3),dtype='f')
R[0,0]=1
R[1,1]=1
R[2,2]=1
Rt = R
K = np.zeros((3,3),dtype='f')
K[0,0]=1111.6
K[1,1]=1111.6
K[0,2]=960
K[1,2]=540
K[2,2]=1
Ki = np.linalg.inv(K)
cen = np.zeros((3),dtype='f')
bbs = np.array([[25,477],[420,872],[1,453],[1,453]],dtype='f')
bbs = np.reshape(bbs,[1,4,2])
(origin, scaling) = get_origin_scaling(bbs, IMAGE_HEIGHT)
return X,Z, Z3, C, cen,K,Ki, R,Rt, scaling, origin, DP
# **********************************************************************************************************
def nmap_normalization(nmap_batch):
image_mag = np.expand_dims(np.sqrt(np.square(nmap_batch).sum(axis=3)),-1)
image_unit = np.divide(nmap_batch,image_mag)
return image_unit
def get_concat_h(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
# **********************************************************************************************************
def path_leaf(inpath):
head, tail = ntpath.split(inpath)
return tail or ntpath.basename(head)
def get_test_data(inpath):
pngpath = inpath+'/*_img.png'
all_img = glob.glob(pngpath)
filename_list = []
for i in range(len(all_img)):
img_name = path_leaf(all_img[i])
name = img_name[0:-8]
dpname = name+"_dp.png"
mname = name+"_mask.png"
if path.exists(inpath+'/'+dpname) and path.exists(inpath+'/'+mname):
filename_list.append(name)
return filename_list
# **********************************************************************************************************
# Function borrowed from https://github.com/sfu-gruvi-3dv/deep_human
def depth2mesh(depth, mask, filename):
h = depth.shape[0]
w = depth.shape[1]
depth = depth.reshape(h,w,1)
f = open(filename + ".obj", "w")
for i in range(h):
for j in range(w):
f.write('v '+str(float(2.0*i/h))+' '+str(float(2.0*j/w))+' '+str(float(depth[i,j,0]))+'\n')
threshold = 0.07
for i in range(h-1):
for j in range(w-1):
if i < 2 or j < 2:
continue
localpatch= np.copy(depth[i-1:i+2,j-1:j+2])
dy_u = localpatch[0,:] - localpatch[1,:]
dx_l = localpatch[:,0] - localpatch[:,1]
dy_d = localpatch[0,:] - localpatch[-1,:]
dx_r = localpatch[:,0] - localpatch[:,-1]
dy_u = np.abs(dy_u)
dx_l = np.abs(dx_l)
dy_d = np.abs(dy_d)
dx_r = np.abs(dx_r)
if np.max(dy_u)<threshold and np.max(dx_l) < threshold and np.max(dy_d) < threshold and np.max(dx_r) < threshold and mask[i,j]:
f.write('f '+str(int(j+i*w+1))+' '+str(int(j+i*w+1+1))+' '+str(int((i + 1)*w+j+1))+'\n')
f.write('f '+str(int((i+1)*w+j+1+1))+' '+str(int((i+1)*w+j+1))+' '+str(int(i * w + j + 1 + 1)) + '\n')
f.close()
return