comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
You have an infinite number of coins with values 1, 2, and 6, and only 2 coins with value 4.
Given an integer n
, return the number of ways to make the sum of n
with the coins you have.
Since the answer may be very large, return it modulo 109 + 7
.
Note that the order of the coins doesn't matter and [2, 2, 3]
is the same as [2, 3, 2]
.
Example 1:
Input: n = 4
Output: 4
Explanation:
Here are the four combinations: [1, 1, 1, 1]
, [1, 1, 2]
, [2, 2]
, [4]
.
Example 2:
Input: n = 12
Output: 22
Explanation:
Note that [4, 4, 4]
is not a valid combination since we cannot use 4 three times.
Example 3:
Input: n = 5
Output: 4
Explanation:
Here are the four combinations: [1, 1, 1, 1, 1]
, [1, 1, 1, 2]
, [1, 2, 2]
, [1, 4]
.
Constraints:
1 <= n <= 105
We can start by ignoring coin coins = [1, 2, 6]
, and then using the idea of the complete knapsack problem. We define coins
, and for each coin
Finally,
Note the modulus operation for the answer.
The time complexity is
class Solution:
def numberOfWays(self, n: int) -> int:
mod = 10**9 + 7
coins = [1, 2, 6]
f = [0] * (n + 1)
f[0] = 1
for x in coins:
for j in range(x, n + 1):
f[j] = (f[j] + f[j - x]) % mod
ans = f[n]
if n >= 4:
ans = (ans + f[n - 4]) % mod
if n >= 8:
ans = (ans + f[n - 8]) % mod
return ans
class Solution {
public int numberOfWays(int n) {
final int mod = (int) 1e9 + 7;
int[] coins = {1, 2, 6};
int[] f = new int[n + 1];
f[0] = 1;
for (int x : coins) {
for (int j = x; j <= n; ++j) {
f[j] = (f[j] + f[j - x]) % mod;
}
}
int ans = f[n];
if (n >= 4) {
ans = (ans + f[n - 4]) % mod;
}
if (n >= 8) {
ans = (ans + f[n - 8]) % mod;
}
return ans;
}
}
class Solution {
public:
int numberOfWays(int n) {
const int mod = 1e9 + 7;
int coins[3] = {1, 2, 6};
int f[n + 1];
memset(f, 0, sizeof(f));
f[0] = 1;
for (int x : coins) {
for (int j = x; j <= n; ++j) {
f[j] = (f[j] + f[j - x]) % mod;
}
}
int ans = f[n];
if (n >= 4) {
ans = (ans + f[n - 4]) % mod;
}
if (n >= 8) {
ans = (ans + f[n - 8]) % mod;
}
return ans;
}
};
func numberOfWays(n int) int {
const mod int = 1e9 + 7
coins := []int{1, 2, 6}
f := make([]int, n+1)
f[0] = 1
for _, x := range coins {
for j := x; j <= n; j++ {
f[j] = (f[j] + f[j-x]) % mod
}
}
ans := f[n]
if n >= 4 {
ans = (ans + f[n-4]) % mod
}
if n >= 8 {
ans = (ans + f[n-8]) % mod
}
return ans
}
function numberOfWays(n: number): number {
const mod = 10 ** 9 + 7;
const f: number[] = Array(n + 1).fill(0);
f[0] = 1;
for (const x of [1, 2, 6]) {
for (let j = x; j <= n; ++j) {
f[j] = (f[j] + f[j - x]) % mod;
}
}
let ans = f[n];
if (n >= 4) {
ans = (ans + f[n - 4]) % mod;
}
if (n >= 8) {
ans = (ans + f[n - 8]) % mod;
}
return ans;
}
We can start by preprocessing the number of ways to make up every amount from
- If
$n < 4$ , directly return$f[n]$ ; - If
$4 \leq n < 8$ , return$f[n] + f[n - 4]$ ; - If
$n \geq 8$ , return$f[n] + f[n - 4] + f[n - 8]$ .
Note the modulus operation for the answer.
The time complexity is
m = 10**5 + 1
mod = 10**9 + 7
coins = [1, 2, 6]
f = [0] * (m)
f[0] = 1
for x in coins:
for j in range(x, m):
f[j] = (f[j] + f[j - x]) % mod
class Solution:
def numberOfWays(self, n: int) -> int:
ans = f[n]
if n >= 4:
ans = (ans + f[n - 4]) % mod
if n >= 8:
ans = (ans + f[n - 8]) % mod
return ans
class Solution {
private static final int MOD = 1000000007;
private static final int M = 100001;
private static final int[] COINS = {1, 2, 6};
private static final int[] f = new int[M];
static {
f[0] = 1;
for (int x : COINS) {
for (int j = x; j < M; ++j) {
f[j] = (f[j] + f[j - x]) % MOD;
}
}
}
public int numberOfWays(int n) {
int ans = f[n];
if (n >= 4) {
ans = (ans + f[n - 4]) % MOD;
}
if (n >= 8) {
ans = (ans + f[n - 8]) % MOD;
}
return ans;
}
}
const int m = 1e5 + 1;
const int mod = 1e9 + 7;
int f[m + 1];
auto init = [] {
f[0] = 1;
int coins[3] = {1, 2, 6};
for (int x : coins) {
for (int j = x; j < m; ++j) {
f[j] = (f[j] + f[j - x]) % mod;
}
}
return 0;
}();
class Solution {
public:
int numberOfWays(int n) {
int ans = f[n];
if (n >= 4) {
ans = (ans + f[n - 4]) % mod;
}
if (n >= 8) {
ans = (ans + f[n - 8]) % mod;
}
return ans;
}
};
const (
m = 100001
mod = 1000000007
)
var f [m]int
func init() {
f[0] = 1
coins := []int{1, 2, 6}
for _, x := range coins {
for j := x; j < m; j++ {
f[j] = (f[j] + f[j-x]) % mod
}
}
}
func numberOfWays(n int) int {
ans := f[n]
if n >= 4 {
ans = (ans + f[n-4]) % mod
}
if n >= 8 {
ans = (ans + f[n-8]) % mod
}
return ans
}
const m: number = 10 ** 5 + 1;
const mod: number = 10 ** 9 + 7;
const f: number[] = Array(m).fill(0);
(() => {
f[0] = 1;
const coins: number[] = [1, 2, 6];
for (const x of coins) {
for (let j = x; j < m; ++j) {
f[j] = (f[j] + f[j - x]) % mod;
}
}
})();
function numberOfWays(n: number): number {
let ans = f[n];
if (n >= 4) {
ans = (ans + f[n - 4]) % mod;
}
if (n >= 8) {
ans = (ans + f[n - 8]) % mod;
}
return ans;
}