Skip to content

Latest commit

 

History

History
166 lines (127 loc) · 4.84 KB

File metadata and controls

166 lines (127 loc) · 4.84 KB
comments difficulty edit_url rating source tags
true
中等
1325
第 388 场周赛 Q2
贪心
数组
排序

English Version

题目描述

给你一个长度为 n 的数组 happiness ,以及一个 正整数 k

n 个孩子站成一队,其中第 i 个孩子的 幸福值 happiness[i] 。你计划组织 k 轮筛选从这 n 个孩子中选出 k 个孩子。

在每一轮选择一个孩子时,所有 尚未 被选中的孩子的 幸福值 将减少 1 。注意,幸福值 不能 变成负数,且只有在它是正数的情况下才会减少。

选择 k 个孩子,并使你选中的孩子幸福值之和最大,返回你能够得到的 最大值

 

示例 1:

输入:happiness = [1,2,3], k = 2
输出:4
解释:按以下方式选择 2 个孩子:
- 选择幸福值为 3 的孩子。剩余孩子的幸福值变为 [0,1] 。
- 选择幸福值为 1 的孩子。剩余孩子的幸福值变为 [0] 。注意幸福值不能小于 0 。
所选孩子的幸福值之和为 3 + 1 = 4 。

示例 2:

输入:happiness = [1,1,1,1], k = 2
输出:1
解释:按以下方式选择 2 个孩子:
- 选择幸福值为 1 的任意一个孩子。剩余孩子的幸福值变为 [0,0,0] 。
- 选择幸福值为 0 的孩子。剩余孩子的幸福值变为 [0,0] 。
所选孩子的幸福值之和为 1 + 0 = 1 。

示例 3:

输入:happiness = [2,3,4,5], k = 1
输出:5
解释:按以下方式选择 1 个孩子:
- 选择幸福值为 5 的孩子。剩余孩子的幸福值变为 [1,2,3] 。
所选孩子的幸福值之和为 5 。

 

提示:

  • 1 <= n == happiness.length <= 2 * 105
  • 1 <= happiness[i] <= 108
  • 1 <= k <= n

解法

方法一:贪心 + 排序

为了使得幸福值之和尽可能大,我们应该优先选择幸福值大的孩子。因此,我们可以对孩子按照幸福值从大到小排序,然后依次选择 $k$ 个孩子。对于当前第 $i$ 个孩子,能够得到的幸福值为 $\max(happiness[i] - i, 0)$,最后返回这 $k$ 个孩子的幸福值之和。

时间复杂度 $O(n \times \log n + k)$,空间复杂度 $O(\log n)$。其中 $n$ 是数组 happiness 的长度。

Python3

class Solution:
    def maximumHappinessSum(self, happiness: List[int], k: int) -> int:
        happiness.sort(reverse=True)
        ans = 0
        for i, x in enumerate(happiness[:k]):
            x -= i
            ans += max(x, 0)
        return ans

Java

class Solution {
    public long maximumHappinessSum(int[] happiness, int k) {
        Arrays.sort(happiness);
        long ans = 0;
        for (int i = 0, n = happiness.length; i < k; ++i) {
            int x = happiness[n - i - 1] - i;
            ans += Math.max(x, 0);
        }
        return ans;
    }
}

C++

class Solution {
public:
    long long maximumHappinessSum(vector<int>& happiness, int k) {
        sort(happiness.rbegin(), happiness.rend());
        long long ans = 0;
        for (int i = 0, n = happiness.size(); i < k; ++i) {
            int x = happiness[i] - i;
            ans += max(x, 0);
        }
        return ans;
    }
};

Go

func maximumHappinessSum(happiness []int, k int) (ans int64) {
	sort.Ints(happiness)
	for i := 0; i < k; i++ {
		x := happiness[len(happiness)-i-1] - i
		ans += int64(max(x, 0))
	}
	return
}

TypeScript

function maximumHappinessSum(happiness: number[], k: number): number {
    happiness.sort((a, b) => b - a);
    let ans = 0;
    for (let i = 0; i < k; ++i) {
        const x = happiness[i] - i;
        ans += Math.max(x, 0);
    }
    return ans;
}