comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
2258 |
Weekly Contest 380 Q3 |
|
You are given an integer k
and an integer x
. The price of a number num
is calculated by the count of set bits at positions x
, 2x
, 3x
, etc., in its binary representation, starting from the least significant bit. The following table contains examples of how price is calculated.
x | num | Binary Representation | Price |
---|---|---|---|
1 | 13 | 000001101 | 3 |
2 | 13 | 000001101 | 1 |
2 | 233 | 011101001 | 3 |
3 | 13 | 000001101 | 1 |
3 | 362 | 101101010 | 2 |
The accumulated price of num
is the total price of numbers from 1
to num
. num
is considered cheap if its accumulated price is less than or equal to k
.
Return the greatest cheap number.
Example 1:
Input: k = 9, x = 1
Output: 6
Explanation:
As shown in the table below, 6
is the greatest cheap number.
x | num | Binary Representation | Price | Accumulated Price |
---|---|---|---|---|
1 | 1 | 001 | 1 | 1 |
1 | 2 | 010 | 1 | 2 |
1 | 3 | 011 | 2 | 4 |
1 | 4 | 100 | 1 | 5 |
1 | 5 | 101 | 2 | 7 |
1 | 6 | 110 | 2 | 9 |
1 | 7 | 111 | 3 | 12 |
Example 2:
Input: k = 7, x = 2
Output: 9
Explanation:
As shown in the table below, 9
is the greatest cheap number.
x | num | Binary Representation | Price | Accumulated Price |
---|---|---|---|---|
2 | 1 | 0001 | 0 | 0 |
2 | 2 | 0010 | 1 | 1 |
2 | 3 | 0011 | 1 | 2 |
2 | 4 | 0100 | 0 | 2 |
2 | 5 | 0101 | 0 | 2 |
2 | 6 | 0110 | 1 | 3 |
2 | 7 | 0111 | 1 | 4 |
2 | 8 | 1000 | 1 | 5 |
2 | 9 | 1001 | 1 | 6 |
2 | 10 | 1010 | 2 | 8 |
Constraints:
1 <= k <= 1015
1 <= x <= 8
class Solution:
def findMaximumNumber(self, k: int, x: int) -> int:
@cache
def dfs(pos, limit, cnt):
if pos == 0:
return cnt
ans = 0
up = (self.num >> (pos - 1) & 1) if limit else 1
for i in range(up + 1):
ans += dfs(pos - 1, limit and i == up, cnt + (i == 1 and pos % x == 0))
return ans
l, r = 1, 10**18
while l < r:
mid = (l + r + 1) >> 1
self.num = mid
v = dfs(mid.bit_length(), True, 0)
dfs.cache_clear()
if v <= k:
l = mid
else:
r = mid - 1
return l
class Solution {
private int x;
private long num;
private Long[][] f;
public long findMaximumNumber(long k, int x) {
this.x = x;
long l = 1, r = (long) 1e17;
while (l < r) {
long mid = (l + r + 1) >>> 1;
num = mid;
f = new Long[65][65];
int pos = 64 - Long.numberOfLeadingZeros(mid);
if (dfs(pos, 0, true) <= k) {
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
private long dfs(int pos, int cnt, boolean limit) {
if (pos == 0) {
return cnt;
}
if (!limit && f[pos][cnt] != null) {
return f[pos][cnt];
}
long ans = 0;
int up = limit ? (int) (num >> (pos - 1) & 1) : 1;
for (int i = 0; i <= up; ++i) {
ans += dfs(pos - 1, cnt + (i == 1 && pos % x == 0 ? 1 : 0), limit && i == up);
}
if (!limit) {
f[pos][cnt] = ans;
}
return ans;
}
}
class Solution {
public:
long long findMaximumNumber(long long k, int x) {
using ll = long long;
ll l = 1, r = 1e17;
ll num = 0;
ll f[65][65];
function<ll(int, int, bool)> dfs = [&](int pos, int cnt, bool limit) -> ll {
if (pos == 0) {
return cnt;
}
if (!limit && f[pos][cnt] != -1) {
return f[pos][cnt];
}
int up = limit ? num >> (pos - 1) & 1 : 1;
ll ans = 0;
for (int i = 0; i <= up; ++i) {
ans += dfs(pos - 1, cnt + (i == 1 && pos % x == 0), limit && i == up);
}
if (!limit) {
f[pos][cnt] = ans;
}
return ans;
};
while (l < r) {
ll mid = (l + r + 1) >> 1;
num = mid;
memset(f, -1, sizeof(f));
int pos = 64 - __builtin_clzll(mid);
if (dfs(pos, 0, true) <= k) {
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
};
func findMaximumNumber(k int64, x int) int64 {
var l, r int64 = 1, 1e17
var num int64
var f [65][65]int64
var dfs func(pos, cnt int, limit bool) int64
dfs = func(pos, cnt int, limit bool) int64 {
if pos == 0 {
return int64(cnt)
}
if !limit && f[pos][cnt] != -1 {
return f[pos][cnt]
}
var ans int64
up := 1
if limit {
up = int(num >> (pos - 1) & 1)
}
for i := 0; i <= up; i++ {
v := cnt
if i == 1 && pos%x == 0 {
v++
}
ans += dfs(pos-1, v, limit && i == up)
}
if !limit {
f[pos][cnt] = ans
}
return ans
}
for l < r {
mid := (l + r + 1) >> 1
num = mid
m := bits.Len(uint(num))
for i := range f {
for j := range f[i] {
f[i][j] = -1
}
}
if dfs(m, 0, true) <= k {
l = mid
} else {
r = mid - 1
}
}
return l
}