Skip to content

Latest commit

 

History

History
250 lines (205 loc) · 7.39 KB

File metadata and controls

250 lines (205 loc) · 7.39 KB
comments difficulty edit_url rating source tags
true
中等
2074
第 367 场周赛 Q4
数组
矩阵
前缀和

English Version

题目描述

给你一个下标从 0 开始、大小为 n * m 的二维整数矩阵 grid ,定义一个下标从 0 开始、大小为 n * m 的的二维矩阵 p。如果满足以下条件,则称 pgrid乘积矩阵

  • 对于每个元素 p[i][j] ,它的值等于除了 grid[i][j] 外所有元素的乘积。乘积对 12345 取余数。

返回 grid 的乘积矩阵。

 

示例 1:

输入:grid = [[1,2],[3,4]]
输出:[[24,12],[8,6]]
解释:p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24
p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12
p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8
p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6
所以答案是 [[24,12],[8,6]] 。

示例 2:

输入:grid = [[12345],[2],[1]]
输出:[[2],[0],[0]]
解释:p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2
p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0 ,所以 p[0][1] = 0
p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0 ,所以 p[0][2] = 0
所以答案是 [[2],[0],[0]] 。

 

提示:

  • 1 <= n == grid.length <= 105
  • 1 <= m == grid[i].length <= 105
  • 2 <= n * m <= 105
  • 1 <= grid[i][j] <= 109

解法

方法一:前后缀分解

我们可以预处理出每个元素的后缀乘积(不包含自身),然后再遍历矩阵,计算得到每个元素的前缀乘积(不包含自身),将两者相乘即可得到每个位置的结果。

具体地,我们用 $p[i][j]$ 表示矩阵中第 $i$ 行第 $j$ 列元素的结果,定义一个变量 $suf$ 表示当前位置右下方的所有元素的乘积,初始时 $suf = 1$。我们从矩阵右下角开始遍历,对于每个位置 $(i, j)$,我们将 $suf$ 赋值给 $p[i][j]$,然后更新 $suf$$suf \times grid[i][j] \bmod 12345$,这样就可以得到每个位置的后缀乘积。

接下来我们从矩阵左上角开始遍历,对于每个位置 $(i, j)$,我们将 $p[i][j]$ 乘上 $pre$,再对 $12345$ 取模,然后更新 $pre$$pre \times grid[i][j] \bmod 12345$,这样就可以得到每个位置的前缀乘积。

遍历结束,返回结果矩阵 $p$ 即可。

时间复杂度 $O(n \times m)$,其中 $n$$m$ 分别是矩阵的行数和列数。忽略结果矩阵的空间占用,空间复杂度 $O(1)$

Python3

class Solution:
    def constructProductMatrix(self, grid: List[List[int]]) -> List[List[int]]:
        n, m = len(grid), len(grid[0])
        p = [[0] * m for _ in range(n)]
        mod = 12345
        suf = 1
        for i in range(n - 1, -1, -1):
            for j in range(m - 1, -1, -1):
                p[i][j] = suf
                suf = suf * grid[i][j] % mod
        pre = 1
        for i in range(n):
            for j in range(m):
                p[i][j] = p[i][j] * pre % mod
                pre = pre * grid[i][j] % mod
        return p

Java

class Solution {
    public int[][] constructProductMatrix(int[][] grid) {
        final int mod = 12345;
        int n = grid.length, m = grid[0].length;
        int[][] p = new int[n][m];
        long suf = 1;
        for (int i = n - 1; i >= 0; --i) {
            for (int j = m - 1; j >= 0; --j) {
                p[i][j] = (int) suf;
                suf = suf * grid[i][j] % mod;
            }
        }
        long pre = 1;
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                p[i][j] = (int) (p[i][j] * pre % mod);
                pre = pre * grid[i][j] % mod;
            }
        }
        return p;
    }
}

C++

class Solution {
public:
    vector<vector<int>> constructProductMatrix(vector<vector<int>>& grid) {
        const int mod = 12345;
        int n = grid.size(), m = grid[0].size();
        vector<vector<int>> p(n, vector<int>(m));
        long long suf = 1;
        for (int i = n - 1; i >= 0; --i) {
            for (int j = m - 1; j >= 0; --j) {
                p[i][j] = suf;
                suf = suf * grid[i][j] % mod;
            }
        }
        long long pre = 1;
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                p[i][j] = p[i][j] * pre % mod;
                pre = pre * grid[i][j] % mod;
            }
        }
        return p;
    }
};

Go

func constructProductMatrix(grid [][]int) [][]int {
	const mod int = 12345
	n, m := len(grid), len(grid[0])
	p := make([][]int, n)
	for i := range p {
		p[i] = make([]int, m)
	}
	suf := 1
	for i := n - 1; i >= 0; i-- {
		for j := m - 1; j >= 0; j-- {
			p[i][j] = suf
			suf = suf * grid[i][j] % mod
		}
	}
	pre := 1
	for i := 0; i < n; i++ {
		for j := 0; j < m; j++ {
			p[i][j] = p[i][j] * pre % mod
			pre = pre * grid[i][j] % mod
		}
	}
	return p
}

TypeScript

function constructProductMatrix(grid: number[][]): number[][] {
    const mod = 12345;
    const [n, m] = [grid.length, grid[0].length];
    const p: number[][] = Array.from({ length: n }, () => Array.from({ length: m }, () => 0));
    let suf = 1;
    for (let i = n - 1; ~i; --i) {
        for (let j = m - 1; ~j; --j) {
            p[i][j] = suf;
            suf = (suf * grid[i][j]) % mod;
        }
    }
    let pre = 1;
    for (let i = 0; i < n; ++i) {
        for (let j = 0; j < m; ++j) {
            p[i][j] = (p[i][j] * pre) % mod;
            pre = (pre * grid[i][j]) % mod;
        }
    }
    return p;
}

Rust

impl Solution {
    pub fn construct_product_matrix(grid: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
        let modulo: i32 = 12345;
        let n = grid.len();
        let m = grid[0].len();
        let mut p: Vec<Vec<i32>> = vec![vec![0; m]; n];
        let mut suf = 1;

        for i in (0..n).rev() {
            for j in (0..m).rev() {
                p[i][j] = suf;
                suf = (((suf as i64) * (grid[i][j] as i64)) % (modulo as i64)) as i32;
            }
        }

        let mut pre = 1;

        for i in 0..n {
            for j in 0..m {
                p[i][j] = (((p[i][j] as i64) * (pre as i64)) % (modulo as i64)) as i32;
                pre = (((pre as i64) * (grid[i][j] as i64)) % (modulo as i64)) as i32;
            }
        }

        p
    }
}