comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
中等 |
1721 |
第 111 场双周赛 Q3 |
|
给你一个整数数组 nums
。nums
的每个元素是 1,2 或 3。在每次操作中,你可以删除 nums
中的一个元素。返回使 nums 成为 非递减 顺序所需操作数的 最小值。
示例 1:
输入:nums = [2,1,3,2,1] 输出:3 解释: 其中一个最优方案是删除 nums[0],nums[2] 和 nums[3]。
示例 2:
输入:nums = [1,3,2,1,3,3] 输出:2 解释: 其中一个最优方案是删除 nums[1] 和 nums[2]。
示例 3:
输入:nums = [2,2,2,2,3,3] 输出:0 解释: nums 已是非递减顺序的。
提示:
1 <= nums.length <= 100
1 <= nums[i] <= 3
进阶:你可以使用 O(n)
时间复杂度以内的算法解决吗?
我们定义
我们可以枚举第
时间复杂度
class Solution:
def minimumOperations(self, nums: List[int]) -> int:
f = [0] * 3
for x in nums:
g = [0] * 3
if x == 1:
g[0] = f[0]
g[1] = min(f[:2]) + 1
g[2] = min(f) + 1
elif x == 2:
g[0] = f[0] + 1
g[1] = min(f[:2])
g[2] = min(f) + 1
else:
g[0] = f[0] + 1
g[1] = min(f[:2]) + 1
g[2] = min(f)
f = g
return min(f)
class Solution {
public int minimumOperations(List<Integer> nums) {
int[] f = new int[3];
for (int x : nums) {
int[] g = new int[3];
if (x == 1) {
g[0] = f[0];
g[1] = Math.min(f[0], f[1]) + 1;
g[2] = Math.min(f[0], Math.min(f[1], f[2])) + 1;
} else if (x == 2) {
g[0] = f[0] + 1;
g[1] = Math.min(f[0], f[1]);
g[2] = Math.min(f[0], Math.min(f[1], f[2])) + 1;
} else {
g[0] = f[0] + 1;
g[1] = Math.min(f[0], f[1]) + 1;
g[2] = Math.min(f[0], Math.min(f[1], f[2]));
}
f = g;
}
return Math.min(f[0], Math.min(f[1], f[2]));
}
}
class Solution {
public:
int minimumOperations(vector<int>& nums) {
vector<int> f(3);
for (int x : nums) {
vector<int> g(3);
if (x == 1) {
g[0] = f[0];
g[1] = min(f[0], f[1]) + 1;
g[2] = min({f[0], f[1], f[2]}) + 1;
} else if (x == 2) {
g[0] = f[0] + 1;
g[1] = min(f[0], f[1]);
g[2] = min(f[0], min(f[1], f[2])) + 1;
} else {
g[0] = f[0] + 1;
g[1] = min(f[0], f[1]) + 1;
g[2] = min(f[0], min(f[1], f[2]));
}
f = move(g);
}
return min({f[0], f[1], f[2]});
}
};
func minimumOperations(nums []int) int {
f := make([]int, 3)
for _, x := range nums {
g := make([]int, 3)
if x == 1 {
g[0] = f[0]
g[1] = min(f[0], f[1]) + 1
g[2] = min(f[0], min(f[1], f[2])) + 1
} else if x == 2 {
g[0] = f[0] + 1
g[1] = min(f[0], f[1])
g[2] = min(f[0], min(f[1], f[2])) + 1
} else {
g[0] = f[0] + 1
g[1] = min(f[0], f[1]) + 1
g[2] = min(f[0], min(f[1], f[2]))
}
f = g
}
return min(f[0], min(f[1], f[2]))
}
function minimumOperations(nums: number[]): number {
let f: number[] = new Array(3).fill(0);
for (const x of nums) {
const g: number[] = new Array(3).fill(0);
if (x === 1) {
g[0] = f[0];
g[1] = Math.min(f[0], f[1]) + 1;
g[2] = Math.min(f[0], Math.min(f[1], f[2])) + 1;
} else if (x === 2) {
g[0] = f[0] + 1;
g[1] = Math.min(f[0], f[1]);
g[2] = Math.min(f[0], Math.min(f[1], f[2])) + 1;
} else {
g[0] = f[0] + 1;
g[1] = Math.min(f[0], f[1]) + 1;
g[2] = Math.min(f[0], Math.min(f[1], f[2]));
}
f = g;
}
return Math.min(...f);
}