comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Easy |
1295 |
Weekly Contest 348 Q2 |
|
You are given a 0-indexed permutation of n
integers nums
.
A permutation is called semi-ordered if the first number equals 1
and the last number equals n
. You can perform the below operation as many times as you want until you make nums
a semi-ordered permutation:
- Pick two adjacent elements in
nums
, then swap them.
Return the minimum number of operations to make nums
a semi-ordered permutation.
A permutation is a sequence of integers from 1
to n
of length n
containing each number exactly once.
Example 1:
Input: nums = [2,1,4,3] Output: 2 Explanation: We can make the permutation semi-ordered using these sequence of operations: 1 - swap i = 0 and j = 1. The permutation becomes [1,2,4,3]. 2 - swap i = 2 and j = 3. The permutation becomes [1,2,3,4]. It can be proved that there is no sequence of less than two operations that make nums a semi-ordered permutation.
Example 2:
Input: nums = [2,4,1,3] Output: 3 Explanation: We can make the permutation semi-ordered using these sequence of operations: 1 - swap i = 1 and j = 2. The permutation becomes [2,1,4,3]. 2 - swap i = 0 and j = 1. The permutation becomes [1,2,4,3]. 3 - swap i = 2 and j = 3. The permutation becomes [1,2,3,4]. It can be proved that there is no sequence of less than three operations that make nums a semi-ordered permutation.
Example 3:
Input: nums = [1,3,4,2,5] Output: 0 Explanation: The permutation is already a semi-ordered permutation.
Constraints:
2 <= nums.length == n <= 50
1 <= nums[i] <= 50
nums is a permutation.
We can first find the indices
If
The time complexity is
class Solution:
def semiOrderedPermutation(self, nums: List[int]) -> int:
n = len(nums)
i = nums.index(1)
j = nums.index(n)
k = 1 if i < j else 2
return i + n - j - k
class Solution {
public int semiOrderedPermutation(int[] nums) {
int n = nums.length;
int i = 0, j = 0;
for (int k = 0; k < n; ++k) {
if (nums[k] == 1) {
i = k;
}
if (nums[k] == n) {
j = k;
}
}
int k = i < j ? 1 : 2;
return i + n - j - k;
}
}
class Solution {
public:
int semiOrderedPermutation(vector<int>& nums) {
int n = nums.size();
int i = find(nums.begin(), nums.end(), 1) - nums.begin();
int j = find(nums.begin(), nums.end(), n) - nums.begin();
int k = i < j ? 1 : 2;
return i + n - j - k;
}
};
func semiOrderedPermutation(nums []int) int {
n := len(nums)
var i, j int
for k, x := range nums {
if x == 1 {
i = k
}
if x == n {
j = k
}
}
k := 1
if i > j {
k = 2
}
return i + n - j - k
}
function semiOrderedPermutation(nums: number[]): number {
const n = nums.length;
const i = nums.indexOf(1);
const j = nums.indexOf(n);
const k = i < j ? 1 : 2;
return i + n - j - k;
}
impl Solution {
pub fn semi_ordered_permutation(nums: Vec<i32>) -> i32 {
let n = nums.len();
let (mut i, mut j) = (0, 0);
for k in 0..n {
if nums[k] == 1 {
i = k;
}
if nums[k] == (n as i32) {
j = k;
}
}
let k = if i < j { 1 } else { 2 };
(i + n - j - k) as i32
}
}