comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Hard |
2060 |
Biweekly Contest 84 Q4 |
|
You are given a 0-indexed integer array nums
. In one operation you can replace any element of the array with any two elements that sum to it.
- For example, consider
nums = [5,6,7]
. In one operation, we can replacenums[1]
with2
and4
and convertnums
to[5,2,4,7]
.
Return the minimum number of operations to make an array that is sorted in non-decreasing order.
Example 1:
Input: nums = [3,9,3] Output: 2 Explanation: Here are the steps to sort the array in non-decreasing order: - From [3,9,3], replace the 9 with 3 and 6 so the array becomes [3,3,6,3] - From [3,3,6,3], replace the 6 with 3 and 3 so the array becomes [3,3,3,3,3] There are 2 steps to sort the array in non-decreasing order. Therefore, we return 2.
Example 2:
Input: nums = [1,2,3,4,5] Output: 0 Explanation: The array is already in non-decreasing order. Therefore, we return 0.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
We observe that to make the array
In other words, we can traverse the array
- If the current element
$nums[i] \leq mx$ , there is no need to replace$nums[i]$ . We simply update$mx = nums[i]$ . - Otherwise, we need to replace
$nums[i]$ with multiple numbers that sum to$nums[i]$ . The maximum of these numbers is$mx$ , and the total number of replacements is$k=\left \lceil \frac{nums[i]}{mx} \right \rceil$ . Therefore, we need to perform$k-1$ operations, which are added to the answer. Among these$k$ numbers, the smallest number is$\left \lfloor \frac{nums[i]}{k} \right \rfloor$ . Therefore, we update$mx = \left \lfloor \frac{nums[i]}{k} \right \rfloor$ .
After the traversal, we return the total number of operations.
The time complexity is
class Solution:
def minimumReplacement(self, nums: List[int]) -> int:
ans = 0
n = len(nums)
mx = nums[-1]
for i in range(n - 2, -1, -1):
if nums[i] <= mx:
mx = nums[i]
continue
k = (nums[i] + mx - 1) // mx
ans += k - 1
mx = nums[i] // k
return ans
class Solution {
public long minimumReplacement(int[] nums) {
long ans = 0;
int n = nums.length;
int mx = nums[n - 1];
for (int i = n - 2; i >= 0; --i) {
if (nums[i] <= mx) {
mx = nums[i];
continue;
}
int k = (nums[i] + mx - 1) / mx;
ans += k - 1;
mx = nums[i] / k;
}
return ans;
}
}
class Solution {
public:
long long minimumReplacement(vector<int>& nums) {
long long ans = 0;
int n = nums.size();
int mx = nums[n - 1];
for (int i = n - 2; i >= 0; --i) {
if (nums[i] <= mx) {
mx = nums[i];
continue;
}
int k = (nums[i] + mx - 1) / mx;
ans += k - 1;
mx = nums[i] / k;
}
return ans;
}
};
func minimumReplacement(nums []int) (ans int64) {
n := len(nums)
mx := nums[n-1]
for i := n - 2; i >= 0; i-- {
if nums[i] <= mx {
mx = nums[i]
continue
}
k := (nums[i] + mx - 1) / mx
ans += int64(k - 1)
mx = nums[i] / k
}
return
}
function minimumReplacement(nums: number[]): number {
const n = nums.length;
let mx = nums[n - 1];
let ans = 0;
for (let i = n - 2; i >= 0; --i) {
if (nums[i] <= mx) {
mx = nums[i];
continue;
}
const k = Math.ceil(nums[i] / mx);
ans += k - 1;
mx = Math.floor(nums[i] / k);
}
return ans;
}
impl Solution {
#[allow(dead_code)]
pub fn minimum_replacement(nums: Vec<i32>) -> i64 {
if nums.len() == 1 {
return 0;
}
let n = nums.len();
let mut max = *nums.last().unwrap();
let mut ret = 0;
for i in (0..=n - 2).rev() {
if nums[i] <= max {
max = nums[i];
continue;
}
// Otherwise make the substitution
let k = (nums[i] + max - 1) / max;
ret += (k - 1) as i64;
// Update the max value, which should be the minimum among the substitution
max = nums[i] / k;
}
ret
}
}