comments | difficulty | edit_url | tags | |||||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
|
You are given a binary array nums
containing only the integers 0
and 1
. Return the number of subarrays in nums that have more 1
's than 0
's. Since the answer may be very large, return it modulo 109 + 7
.
A subarray is a contiguous sequence of elements within an array.
Example 1:
Input: nums = [0,1,1,0,1] Output: 9 Explanation: The subarrays of size 1 that have more ones than zeros are: [1], [1], [1] The subarrays of size 2 that have more ones than zeros are: [1,1] The subarrays of size 3 that have more ones than zeros are: [0,1,1], [1,1,0], [1,0,1] The subarrays of size 4 that have more ones than zeros are: [1,1,0,1] The subarrays of size 5 that have more ones than zeros are: [0,1,1,0,1]
Example 2:
Input: nums = [0] Output: 0 Explanation: No subarrays have more ones than zeros.
Example 3:
Input: nums = [1] Output: 1 Explanation: The subarrays of size 1 that have more ones than zeros are: [1]
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 1
The problem requires us to count the number of subarrays where the count of
To calculate the sum of elements in a subarray, we can use the prefix sum. To count the number of subarrays where the sum of elements is greater than
Next, we traverse the array
Finally, return
The time complexity is
class BinaryIndexedTree:
__slots__ = ["n", "c"]
def __init__(self, n: int):
self.n = n
self.c = [0] * (n + 1)
def update(self, x: int, v: int):
while x <= self.n:
self.c[x] += v
x += x & -x
def query(self, x: int) -> int:
s = 0
while x:
s += self.c[x]
x -= x & -x
return s
class Solution:
def subarraysWithMoreZerosThanOnes(self, nums: List[int]) -> int:
n = len(nums)
base = n + 1
tree = BinaryIndexedTree(n + base)
tree.update(base, 1)
mod = 10**9 + 7
ans = s = 0
for x in nums:
s += x or -1
ans += tree.query(s - 1 + base)
ans %= mod
tree.update(s + base, 1)
return ans
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int v) {
for (; x <= n; x += x & -x) {
c[x] += v;
}
}
public int query(int x) {
int s = 0;
for (; x > 0; x -= x & -x) {
s += c[x];
}
return s;
}
}
class Solution {
public int subarraysWithMoreZerosThanOnes(int[] nums) {
int n = nums.length;
int base = n + 1;
BinaryIndexedTree tree = new BinaryIndexedTree(n + base);
tree.update(base, 1);
final int mod = (int) 1e9 + 7;
int ans = 0, s = 0;
for (int x : nums) {
s += x == 0 ? -1 : 1;
ans += tree.query(s - 1 + base);
ans %= mod;
tree.update(s + base, 1);
}
return ans;
}
}
class BinaryIndexedTree {
private:
int n;
vector<int> c;
public:
BinaryIndexedTree(int n)
: n(n)
, c(n + 1, 0) {}
void update(int x, int v) {
for (; x <= n; x += x & -x) {
c[x] += v;
}
}
int query(int x) {
int s = 0;
for (; x > 0; x -= x & -x) {
s += c[x];
}
return s;
}
};
class Solution {
public:
int subarraysWithMoreZerosThanOnes(vector<int>& nums) {
int n = nums.size();
int base = n + 1;
BinaryIndexedTree tree(n + base);
tree.update(base, 1);
const int mod = 1e9 + 7;
int ans = 0, s = 0;
for (int x : nums) {
s += (x == 0) ? -1 : 1;
ans += tree.query(s - 1 + base);
ans %= mod;
tree.update(s + base, 1);
}
return ans;
}
};
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
return &BinaryIndexedTree{n: n, c: make([]int, n+1)}
}
func (bit *BinaryIndexedTree) update(x, v int) {
for ; x <= bit.n; x += x & -x {
bit.c[x] += v
}
}
func (bit *BinaryIndexedTree) query(x int) (s int) {
for ; x > 0; x -= x & -x {
s += bit.c[x]
}
return
}
func subarraysWithMoreZerosThanOnes(nums []int) (ans int) {
n := len(nums)
base := n + 1
tree := newBinaryIndexedTree(n + base)
tree.update(base, 1)
const mod = int(1e9) + 7
s := 0
for _, x := range nums {
if x == 0 {
s--
} else {
s++
}
ans += tree.query(s - 1 + base)
ans %= mod
tree.update(s+base, 1)
}
return
}
class BinaryIndexedTree {
private n: number;
private c: number[];
constructor(n: number) {
this.n = n;
this.c = Array(n + 1).fill(0);
}
update(x: number, v: number): void {
for (; x <= this.n; x += x & -x) {
this.c[x] += v;
}
}
query(x: number): number {
let s = 0;
for (; x > 0; x -= x & -x) {
s += this.c[x];
}
return s;
}
}
function subarraysWithMoreZerosThanOnes(nums: number[]): number {
const n: number = nums.length;
const base: number = n + 1;
const tree: BinaryIndexedTree = new BinaryIndexedTree(n + base);
tree.update(base, 1);
const mod: number = 1e9 + 7;
let ans: number = 0;
let s: number = 0;
for (const x of nums) {
s += x || -1;
ans += tree.query(s - 1 + base);
ans %= mod;
tree.update(s + base, 1);
}
return ans;
}
from sortedcontainers import SortedList
class Solution:
def subarraysWithMoreZerosThanOnes(self, nums: List[int]) -> int:
sl = SortedList([0])
mod = 10**9 + 7
ans = s = 0
for x in nums:
s += x or -1
ans += sl.bisect_left(s)
ans %= mod
sl.add(s)
return ans