comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
简单 |
|
有一个具有 n
个顶点的 双向 图,其中每个顶点标记从 0
到 n - 1
(包含 0
和 n - 1
)。图中的边用一个二维整数数组 edges
表示,其中 edges[i] = [ui, vi]
表示顶点 ui
和顶点 vi
之间的双向边。 每个顶点对由 最多一条 边连接,并且没有顶点存在与自身相连的边。
请你确定是否存在从顶点 source
开始,到顶点 destination
结束的 有效路径 。
给你数组 edges
和整数 n
、source
和 destination
,如果从 source
到 destination
存在 有效路径 ,则返回 true
,否则返回 false
。
示例 1:
输入:n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2 输出:true 解释:存在由顶点 0 到顶点 2 的路径: - 0 → 1 → 2 - 0 → 2
示例 2:
输入:n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5 输出:false 解释:不存在由顶点 0 到顶点 5 的路径.
提示:
1 <= n <= 2 * 105
0 <= edges.length <= 2 * 105
edges[i].length == 2
0 <= ui, vi <= n - 1
ui != vi
0 <= source, destination <= n - 1
- 不存在重复边
- 不存在指向顶点自身的边
我们先将 edges
转换成邻接表 source
到 destination
的路径。
过程中,我们用数组 vis
记录已经访问过的顶点,避免重复访问。
时间复杂度
class Solution:
def validPath(
self, n: int, edges: List[List[int]], source: int, destination: int
) -> bool:
def dfs(i):
if i == destination:
return True
vis.add(i)
for j in g[i]:
if j not in vis and dfs(j):
return True
return False
g = [[] for _ in range(n)]
for a, b in edges:
g[a].append(b)
g[b].append(a)
vis = set()
return dfs(source)
class Solution {
private int destination;
private boolean[] vis;
private List<Integer>[] g;
public boolean validPath(int n, int[][] edges, int source, int destination) {
g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
vis = new boolean[n];
this.destination = destination;
return dfs(source);
}
private boolean dfs(int i) {
if (i == destination) {
return true;
}
vis[i] = true;
for (int j : g[i]) {
if (!vis[j] && dfs(j)) {
return true;
}
}
return false;
}
}
class Solution {
public:
bool validPath(int n, vector<vector<int>>& edges, int source, int destination) {
vector<bool> vis(n);
vector<int> g[n];
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].emplace_back(b);
g[b].emplace_back(a);
}
function<bool(int)> dfs = [&](int i) -> bool {
if (i == destination) {
return true;
}
vis[i] = true;
for (int& j : g[i]) {
if (!vis[j] && dfs(j)) {
return true;
}
}
return false;
};
return dfs(source);
}
};
func validPath(n int, edges [][]int, source int, destination int) bool {
vis := make([]bool, n)
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
var dfs func(int) bool
dfs = func(i int) bool {
if i == destination {
return true
}
vis[i] = true
for _, j := range g[i] {
if !vis[j] && dfs(j) {
return true
}
}
return false
}
return dfs(source)
}
function validPath(n: number, edges: number[][], source: number, destination: number): boolean {
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
const vis = new Set<number>();
const dfs = (i: number) => {
if (i === destination) {
return true;
}
if (vis.has(i)) {
return false;
}
vis.add(i);
return g[i].some(dfs);
};
return dfs(source);
}
use std::collections::HashSet;
impl Solution {
pub fn valid_path(n: i32, edges: Vec<Vec<i32>>, source: i32, destination: i32) -> bool {
let mut vis = vec![false; n as usize];
let mut g = vec![HashSet::new(); n as usize];
for e in edges {
let a = e[0] as usize;
let b = e[1] as usize;
g[a].insert(b);
g[b].insert(a);
}
dfs(source as usize, destination as usize, &mut vis, &g)
}
}
fn dfs(i: usize, destination: usize, vis: &mut Vec<bool>, g: &Vec<HashSet<usize>>) -> bool {
if i == destination {
return true;
}
vis[i] = true;
for &j in &g[i] {
if !vis[j] && dfs(j, destination, vis, g) {
return true;
}
}
false
}
我们也可以使用 BFS,判断是否存在从 source
到 destination
的路径。
具体地,我们定义一个队列 source
加入队列。另外,我们用一个集合 vis
记录已经访问过的顶点,避免重复访问。
接下来,我们不断从队列中取出顶点 source
到 destination
的路径,返回 true
。否则,我们遍历
最后,如果队列为空,说明不存在从 source
到 destination
的路径,返回 false
。
时间复杂度
class Solution:
def validPath(
self, n: int, edges: List[List[int]], source: int, destination: int
) -> bool:
g = [[] for _ in range(n)]
for a, b in edges:
g[a].append(b)
g[b].append(a)
q = deque([source])
vis = {source}
while q:
i = q.popleft()
if i == destination:
return True
for j in g[i]:
if j not in vis:
vis.add(j)
q.append(j)
return False
class Solution {
public boolean validPath(int n, int[][] edges, int source, int destination) {
List<Integer>[] g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
Deque<Integer> q = new ArrayDeque<>();
q.offer(source);
boolean[] vis = new boolean[n];
vis[source] = true;
while (!q.isEmpty()) {
int i = q.poll();
if (i == destination) {
return true;
}
for (int j : g[i]) {
if (!vis[j]) {
vis[j] = true;
q.offer(j);
}
}
}
return false;
}
}
class Solution {
public:
bool validPath(int n, vector<vector<int>>& edges, int source, int destination) {
vector<vector<int>> g(n);
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
queue<int> q{{source}};
vector<bool> vis(n);
vis[source] = true;
while (q.size()) {
int i = q.front();
q.pop();
if (i == destination) {
return true;
}
for (int j : g[i]) {
if (!vis[j]) {
vis[j] = true;
q.push(j);
}
}
}
return false;
}
};
func validPath(n int, edges [][]int, source int, destination int) bool {
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
q := []int{source}
vis := make([]bool, n)
vis[source] = true
for len(q) > 0 {
i := q[0]
q = q[1:]
if i == destination {
return true
}
for _, j := range g[i] {
if !vis[j] {
vis[j] = true
q = append(q, j)
}
}
}
return false
}
function validPath(n: number, edges: number[][], source: number, destination: number): boolean {
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
const vis = new Set<number>();
const q = [source];
while (q.length) {
const i = q.pop()!;
if (i === destination) {
return true;
}
if (vis.has(i)) {
continue;
}
vis.add(i);
q.push(...g[i]);
}
return false;
}
use std::collections::{HashSet, VecDeque};
impl Solution {
pub fn valid_path(n: i32, edges: Vec<Vec<i32>>, source: i32, destination: i32) -> bool {
let mut g = vec![HashSet::new(); n as usize];
for e in edges {
let a = e[0] as usize;
let b = e[1] as usize;
g[a].insert(b);
g[b].insert(a);
}
let mut q = VecDeque::new();
q.push_back(source as usize);
let mut vis = vec![false; n as usize];
vis[source as usize] = true;
while let Some(i) = q.pop_front() {
if i == (destination as usize) {
return true;
}
for &j in &g[i] {
if !vis[j] {
vis[j] = true;
q.push_back(j);
}
}
}
false
}
}
并查集是一种树形的数据结构,顾名思义,它用于处理一些不交集的合并及查询问题。 它支持两种操作:
- 查找(Find):确定某个元素处于哪个子集,单次操作时间复杂度
$O(\alpha(n))$ - 合并(Union):将两个子集合并成一个集合,单次操作时间复杂度
$O(\alpha(n))$
对于本题,我们可以利用并查集,将 edges
中的边进行合并,然后判断 source
和 destination
是否在同一个集合中。
时间复杂度
class Solution:
def validPath(
self, n: int, edges: List[List[int]], source: int, destination: int
) -> bool:
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
p = list(range(n))
for u, v in edges:
p[find(u)] = find(v)
return find(source) == find(destination)
class Solution {
private int[] p;
public boolean validPath(int n, int[][] edges, int source, int destination) {
p = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
}
for (int[] e : edges) {
p[find(e[0])] = find(e[1]);
}
return find(source) == find(destination);
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
bool validPath(int n, vector<vector<int>>& edges, int source, int destination) {
vector<int> p(n);
iota(p.begin(), p.end(), 0);
function<int(int)> find = [&](int x) -> int {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
};
for (auto& e : edges) {
p[find(e[0])] = find(e[1]);
}
return find(source) == find(destination);
}
};
func validPath(n int, edges [][]int, source int, destination int) bool {
p := make([]int, n)
for i := range p {
p[i] = i
}
var find func(x int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
for _, e := range edges {
p[find(e[0])] = find(e[1])
}
return find(source) == find(destination)
}
function validPath(n: number, edges: number[][], source: number, destination: number): boolean {
const p: number[] = Array.from({ length: n }, (_, i) => i);
const find = (x: number): number => {
if (p[x] !== x) {
p[x] = find(p[x]);
}
return p[x];
};
for (const [a, b] of edges) {
p[find(a)] = find(b);
}
return find(source) === find(destination);
}