comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Easy |
1314 |
Biweekly Contest 50 Q1 |
|
You are given an integer array nums
(0-indexed). In one operation, you can choose an element of the array and increment it by 1
.
<li>For example, if <code>nums = [1,2,3]</code>, you can choose to increment <code>nums[1]</code> to make <code>nums = [1,<u><b>3</b></u>,3]</code>.</li>
Return the minimum number of operations needed to make nums
strictly increasing.
An array nums
is strictly increasing if nums[i] < nums[i+1]
for all 0 <= i < nums.length - 1
. An array of length 1
is trivially strictly increasing.
Example 1:
Input: nums = [1,1,1] Output: 3 Explanation: You can do the following operations: 1) Increment nums[2], so nums becomes [1,1,2]. 2) Increment nums[1], so nums becomes [1,2,2]. 3) Increment nums[2], so nums becomes [1,2,3].
Example 2:
Input: nums = [1,5,2,4,1] Output: 14
Example 3:
Input: nums = [8] Output: 0
Constraints:
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
We use a variable
Traverse the array nums
from left to right. For the current element
The time complexity is nums
. The space complexity is
class Solution:
def minOperations(self, nums: List[int]) -> int:
ans = mx = 0
for v in nums:
ans += max(0, mx + 1 - v)
mx = max(mx + 1, v)
return ans
class Solution {
public int minOperations(int[] nums) {
int ans = 0, mx = 0;
for (int v : nums) {
ans += Math.max(0, mx + 1 - v);
mx = Math.max(mx + 1, v);
}
return ans;
}
}
class Solution {
public:
int minOperations(vector<int>& nums) {
int ans = 0, mx = 0;
for (int& v : nums) {
ans += max(0, mx + 1 - v);
mx = max(mx + 1, v);
}
return ans;
}
};
func minOperations(nums []int) (ans int) {
mx := 0
for _, v := range nums {
ans += max(0, mx+1-v)
mx = max(mx+1, v)
}
return
}
function minOperations(nums: number[]): number {
let ans = 0;
let max = 0;
for (const v of nums) {
ans += Math.max(0, max + 1 - v);
max = Math.max(max + 1, v);
}
return ans;
}
impl Solution {
pub fn min_operations(nums: Vec<i32>) -> i32 {
let mut ans = 0;
let mut max = 0;
for &v in nums.iter() {
ans += (0).max(max + 1 - v);
max = v.max(max + 1);
}
ans
}
}
public class Solution {
public int MinOperations(int[] nums) {
int ans = 0, mx = 0;
foreach (int v in nums) {
ans += Math.Max(0, mx + 1 - v);
mx = Math.Max(mx + 1, v);
}
return ans;
}
}
#define max(a, b) (((a) > (b)) ? (a) : (b))
int minOperations(int* nums, int numsSize) {
int ans = 0;
int mx = 0;
for (int i = 0; i < numsSize; i++) {
ans += max(0, mx + 1 - nums[i]);
mx = max(mx + 1, nums[i]);
}
return ans;
}