comments | difficulty | edit_url | rating | source | tags | |
---|---|---|---|---|---|---|
true |
Easy |
1324 |
Weekly Contest 227 Q1 |
|
Given an array nums
, return true
if the array was originally sorted in non-decreasing order, then rotated some number of positions (including zero). Otherwise, return false
.
There may be duplicates in the original array.
Note: An array A
rotated by x
positions results in an array B
of the same length such that A[i] == B[(i+x) % A.length]
, where %
is the modulo operation.
Example 1:
Input: nums = [3,4,5,1,2] Output: true Explanation: [1,2,3,4,5] is the original sorted array. You can rotate the array by x = 3 positions to begin on the the element of value 3: [3,4,5,1,2].
Example 2:
Input: nums = [2,1,3,4] Output: false Explanation: There is no sorted array once rotated that can make nums.
Example 3:
Input: nums = [1,2,3] Output: true Explanation: [1,2,3] is the original sorted array. You can rotate the array by x = 0 positions (i.e. no rotation) to make nums.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
class Solution:
def check(self, nums: List[int]) -> bool:
return sum(nums[i - 1] > v for i, v in enumerate(nums)) <= 1
class Solution {
public boolean check(int[] nums) {
int cnt = 0;
for (int i = 0, n = nums.length; i < n; ++i) {
if (nums[i] > nums[(i + 1) % n]) {
++cnt;
}
}
return cnt <= 1;
}
}
class Solution {
public:
bool check(vector<int>& nums) {
int cnt = 0;
for (int i = 0, n = nums.size(); i < n; ++i) {
cnt += nums[i] > (nums[(i + 1) % n]);
}
return cnt <= 1;
}
};
func check(nums []int) bool {
cnt := 0
for i, v := range nums {
if v > nums[(i+1)%len(nums)] {
cnt++
}
}
return cnt <= 1
}
function check(nums: number[]): boolean {
const n = nums.length;
return nums.reduce((r, v, i) => r + (v > nums[(i + 1) % n] ? 1 : 0), 0) <= 1;
}
impl Solution {
pub fn check(nums: Vec<i32>) -> bool {
let n = nums.len();
let mut count = 0;
for i in 0..n {
if nums[i] > nums[(i + 1) % n] {
count += 1;
}
}
count <= 1
}
}
bool check(int* nums, int numsSize) {
int count = 0;
for (int i = 0; i < numsSize; i++) {
if (nums[i] > nums[(i + 1) % numsSize]) {
count++;
}
}
return count <= 1;
}