comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1799 |
Weekly Contest 153 Q3 |
|
Given an array of integers, return the maximum sum for a non-empty subarray (contiguous elements) with at most one element deletion. In other words, you want to choose a subarray and optionally delete one element from it so that there is still at least one element left and the sum of the remaining elements is maximum possible.
Note that the subarray needs to be non-empty after deleting one element.
Example 1:
Input: arr = [1,-2,0,3] Output: 4 Explanation: Because we can choose [1, -2, 0, 3] and drop -2, thus the subarray [1, 0, 3] becomes the maximum value.
Example 2:
Input: arr = [1,-2,-2,3] Output: 3 Explanation: We just choose [3] and it's the maximum sum.
Example 3:
Input: arr = [-1,-1,-1,-1] Output: -1 Explanation: The final subarray needs to be non-empty. You can't choose [-1] and delete -1 from it, then get an empty subarray to make the sum equals to 0.
Constraints:
1 <= arr.length <= 105
-104 <= arr[i] <= 104
We can first preprocess the array
If we do not delete any element, then the maximum subarray sum is the maximum value in
The time complexity is
class Solution:
def maximumSum(self, arr: List[int]) -> int:
n = len(arr)
left = [0] * n
right = [0] * n
s = 0
for i, x in enumerate(arr):
s = max(s, 0) + x
left[i] = s
s = 0
for i in range(n - 1, -1, -1):
s = max(s, 0) + arr[i]
right[i] = s
ans = max(left)
for i in range(1, n - 1):
ans = max(ans, left[i - 1] + right[i + 1])
return ans
class Solution {
public int maximumSum(int[] arr) {
int n = arr.length;
int[] left = new int[n];
int[] right = new int[n];
int ans = -(1 << 30);
for (int i = 0, s = 0; i < n; ++i) {
s = Math.max(s, 0) + arr[i];
left[i] = s;
ans = Math.max(ans, left[i]);
}
for (int i = n - 1, s = 0; i >= 0; --i) {
s = Math.max(s, 0) + arr[i];
right[i] = s;
}
for (int i = 1; i < n - 1; ++i) {
ans = Math.max(ans, left[i - 1] + right[i + 1]);
}
return ans;
}
}
class Solution {
public:
int maximumSum(vector<int>& arr) {
int n = arr.size();
int left[n];
int right[n];
for (int i = 0, s = 0; i < n; ++i) {
s = max(s, 0) + arr[i];
left[i] = s;
}
for (int i = n - 1, s = 0; ~i; --i) {
s = max(s, 0) + arr[i];
right[i] = s;
}
int ans = *max_element(left, left + n);
for (int i = 1; i < n - 1; ++i) {
ans = max(ans, left[i - 1] + right[i + 1]);
}
return ans;
}
};
func maximumSum(arr []int) int {
n := len(arr)
left := make([]int, n)
right := make([]int, n)
for i, s := 0, 0; i < n; i++ {
s = max(s, 0) + arr[i]
left[i] = s
}
for i, s := n-1, 0; i >= 0; i-- {
s = max(s, 0) + arr[i]
right[i] = s
}
ans := slices.Max(left)
for i := 1; i < n-1; i++ {
ans = max(ans, left[i-1]+right[i+1])
}
return ans
}
function maximumSum(arr: number[]): number {
const n = arr.length;
const left: number[] = Array(n).fill(0);
const right: number[] = Array(n).fill(0);
for (let i = 0, s = 0; i < n; ++i) {
s = Math.max(s, 0) + arr[i];
left[i] = s;
}
for (let i = n - 1, s = 0; i >= 0; --i) {
s = Math.max(s, 0) + arr[i];
right[i] = s;
}
let ans = Math.max(...left);
for (let i = 1; i < n - 1; ++i) {
ans = Math.max(ans, left[i - 1] + right[i + 1]);
}
return ans;
}