Skip to content

Latest commit

 

History

History
189 lines (144 loc) · 5.37 KB

File metadata and controls

189 lines (144 loc) · 5.37 KB
comments difficulty edit_url rating source tags
true
简单
1234
第 153 场周赛 Q1
数组

English Version

题目描述

环形公交路线上有 n 个站,按次序从 0 到 n - 1 进行编号。我们已知每一对相邻公交站之间的距离,distance[i] 表示编号为 i 的车站和编号为 (i + 1) % n 的车站之间的距离。

环线上的公交车都可以按顺时针和逆时针的方向行驶。

返回乘客从出发点 start 到目的地 destination 之间的最短距离。

 

示例 1:

输入:distance = [1,2,3,4], start = 0, destination = 1
输出:1
解释:公交站 0 和 1 之间的距离是 1 或 9,最小值是 1。

 

示例 2:

输入:distance = [1,2,3,4], start = 0, destination = 2
输出:3
解释:公交站 0 和 2 之间的距离是 3 或 7,最小值是 3。

 

示例 3:

输入:distance = [1,2,3,4], start = 0, destination = 3
输出:4
解释:公交站 0 和 3 之间的距离是 6 或 4,最小值是 4。

 

提示:

  • 1 <= n <= 10^4
  • distance.length == n
  • 0 <= start, destination < n
  • 0 <= distance[i] <= 10^4

解法

方法一:模拟

我们可以先统计出公交车的总行驶距离 $s$,然后模拟公交车的行驶过程,从出发点开始,每次向右移动一站,直到到达目的地为止。在模拟的过程中,我们可以记录从出发点到目的地的距离 $a$,那么从目的地到出发点的最短距离就是 $\min(a, s - a)$

时间复杂度 $O(n)$,其中 $n$ 是公交车站的数量。空间复杂度 $O(1)$

Python3

class Solution:
    def distanceBetweenBusStops(
        self, distance: List[int], start: int, destination: int
    ) -> int:
        a, n = 0, len(distance)
        while start != destination:
            a += distance[start]
            start = (start + 1) % n
        return min(a, sum(distance) - a)

Java

class Solution {
    public int distanceBetweenBusStops(int[] distance, int start, int destination) {
        int s = Arrays.stream(distance).sum();
        int n = distance.length;
        int a = 0;
        while (start != destination) {
            a += distance[start];
            start = (start + 1) % n;
        }
        return Math.min(a, s - a);
    }
}

C++

class Solution {
public:
    int distanceBetweenBusStops(vector<int>& distance, int start, int destination) {
        int s = accumulate(distance.begin(), distance.end(), 0);
        int a = 0, n = distance.size();
        while (start != destination) {
            a += distance[start];
            start = (start + 1) % n;
        }
        return min(a, s - a);
    }
};

Go

func distanceBetweenBusStops(distance []int, start int, destination int) int {
	s := 0
	for _, x := range distance {
		s += x
	}
	a, n := 0, len(distance)
	for start != destination {
		a += distance[start]
		start = (start + 1) % n
	}
	return min(a, s-a)
}

TypeScript

function distanceBetweenBusStops(distance: number[], start: number, destination: number): number {
    const s = distance.reduce((a, b) => a + b, 0);
    let a = 0;
    const n = distance.length;
    while (start != destination) {
        a += distance[start];
        start = (start + 1) % n;
    }
    return Math.min(a, s - a);
}

JavaScript

/**
 * @param {number[]} distance
 * @param {number} start
 * @param {number} destination
 * @return {number}
 */
var distanceBetweenBusStops = function (distance, start, destination) {
    const s = distance.reduce((a, b) => a + b, 0);
    let a = 0;
    const n = distance.length;
    while (start != destination) {
        a += distance[start];
        start = (start + 1) % n;
    }
    return Math.min(a, s - a);
};