comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
1908 |
Weekly Contest 145 Q3 |
|
We are given hours
, a list of the number of hours worked per day for a given employee.
A day is considered to be a tiring day if and only if the number of hours worked is (strictly) greater than 8
.
A well-performing interval is an interval of days for which the number of tiring days is strictly larger than the number of non-tiring days.
Return the length of the longest well-performing interval.
Example 1:
Input: hours = [9,9,6,0,6,6,9] Output: 3 Explanation: The longest well-performing interval is [9,9,6].
Example 2:
Input: hours = [6,6,6] Output: 0
Constraints:
1 <= hours.length <= 104
0 <= hours[i] <= 16
We can use the idea of prefix sum, maintaining a variable
Next, we traverse the hours
array, for each index
- If
$hours[i] > 8$ , we increment$s$ by$1$ , otherwise we decrement$s$ by$1$ . - If
$s > 0$ , it means that the segment from index$0$ to the current index$i$ is a "well-performing time period", we update the result$ans = i + 1$ . Otherwise, if$s - 1$ is in the hash table$pos$ , let$j = pos[s - 1]$ , it means that the segment from index$j + 1$ to the current index$i$ is a "well-performing time period", we update the result$ans = \max(ans, i - j)$ . - Then, if
$s$ is not in the hash table$pos$ , we record$pos[s] = i$ .
After the traversal, return the answer.
The time complexity is hours
array.
class Solution:
def longestWPI(self, hours: List[int]) -> int:
ans = s = 0
pos = {}
for i, x in enumerate(hours):
s += 1 if x > 8 else -1
if s > 0:
ans = i + 1
elif s - 1 in pos:
ans = max(ans, i - pos[s - 1])
if s not in pos:
pos[s] = i
return ans
class Solution {
public int longestWPI(int[] hours) {
int ans = 0, s = 0;
Map<Integer, Integer> pos = new HashMap<>();
for (int i = 0; i < hours.length; ++i) {
s += hours[i] > 8 ? 1 : -1;
if (s > 0) {
ans = i + 1;
} else if (pos.containsKey(s - 1)) {
ans = Math.max(ans, i - pos.get(s - 1));
}
pos.putIfAbsent(s, i);
}
return ans;
}
}
class Solution {
public:
int longestWPI(vector<int>& hours) {
int ans = 0, s = 0;
unordered_map<int, int> pos;
for (int i = 0; i < hours.size(); ++i) {
s += hours[i] > 8 ? 1 : -1;
if (s > 0) {
ans = i + 1;
} else if (pos.count(s - 1)) {
ans = max(ans, i - pos[s - 1]);
}
if (!pos.count(s)) {
pos[s] = i;
}
}
return ans;
}
};
func longestWPI(hours []int) (ans int) {
s := 0
pos := map[int]int{}
for i, x := range hours {
if x > 8 {
s++
} else {
s--
}
if s > 0 {
ans = i + 1
} else if j, ok := pos[s-1]; ok {
ans = max(ans, i-j)
}
if _, ok := pos[s]; !ok {
pos[s] = i
}
}
return
}