comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Hard |
1664 |
Biweekly Contest 4 Q4 |
|
Given an integer array nums
sorted in non-decreasing order and an integer k
, return true
if this array can be divided into one or more disjoint increasing subsequences of length at least k
, or false
otherwise.
Example 1:
Input: nums = [1,2,2,3,3,4,4], k = 3 Output: true Explanation: The array can be divided into two subsequences [1,2,3,4] and [2,3,4] with lengths at least 3 each.
Example 2:
Input: nums = [5,6,6,7,8], k = 3 Output: false Explanation: There is no way to divide the array using the conditions required.
Constraints:
1 <= k <= nums.length <= 105
1 <= nums[i] <= 105
nums
is sorted in non-decreasing order.
We assume that the array can be divided into true
, otherwise return false
.
The time complexity is
class Solution:
def canDivideIntoSubsequences(self, nums: List[int], k: int) -> bool:
mx = max(len(list(x)) for _, x in groupby(nums))
return mx * k <= len(nums)
class Solution {
public boolean canDivideIntoSubsequences(int[] nums, int k) {
Map<Integer, Integer> cnt = new HashMap<>();
int mx = 0;
for (int x : nums) {
mx = Math.max(mx, cnt.merge(x, 1, Integer::sum));
}
return mx * k <= nums.length;
}
}
class Solution {
public:
bool canDivideIntoSubsequences(vector<int>& nums, int k) {
int cnt = 0;
int a = 0;
for (int& b : nums) {
cnt = a == b ? cnt + 1 : 1;
if (cnt * k > nums.size()) {
return false;
}
a = b;
}
return true;
}
};
func canDivideIntoSubsequences(nums []int, k int) bool {
cnt, a := 0, 0
for _, b := range nums {
cnt++
if a != b {
cnt = 1
}
if cnt*k > len(nums) {
return false
}
a = b
}
return true
}
class Solution {
public boolean canDivideIntoSubsequences(int[] nums, int k) {
int cnt = 0;
int a = 0;
for (int b : nums) {
cnt = a == b ? cnt + 1 : 1;
if (cnt * k > nums.length) {
return false;
}
a = b;
}
return true;
}
}