comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1749 |
Weekly Contest 144 Q4 |
|
A string is a valid parentheses string (denoted VPS) if and only if it consists of "("
and ")"
characters only, and:
<li>It is the empty string, or</li>
<li>It can be written as <code>AB</code> (<code>A</code> concatenated with <code>B</code>), where <code>A</code> and <code>B</code> are VPS's, or</li>
<li>It can be written as <code>(A)</code>, where <code>A</code> is a VPS.</li>
We can similarly define the nesting depth depth(S)
of any VPS S
as follows:
<li><code>depth("") = 0</code></li>
<li><code>depth(A + B) = max(depth(A), depth(B))</code>, where <code>A</code> and <code>B</code> are VPS's</li>
<li><code>depth("(" + A + ")") = 1 + depth(A)</code>, where <code>A</code> is a VPS.</li>
For example, ""
, "()()"
, and "()(()())"
are VPS's (with nesting depths 0, 1, and 2), and ")("
and "(()"
are not VPS's.
Given a VPS seq, split it into two disjoint subsequences A
and B
, such that A
and B
are VPS's (and A.length + B.length = seq.length
).
Now choose any such A
and B
such that max(depth(A), depth(B))
is the minimum possible value.
Return an answer
array (of length seq.length
) that encodes such a choice of A
and B
: answer[i] = 0
if seq[i]
is part of A
, else answer[i] = 1
. Note that even though multiple answers may exist, you may return any of them.
Example 1:
Input: seq = "(()())" Output: [0,1,1,1,1,0]
Example 2:
Input: seq = "()(())()" Output: [0,0,0,1,1,0,1,1]
Constraints:
1 <= seq.size <= 10000
We use a variable
We traverse the string
The time complexity is
class Solution:
def maxDepthAfterSplit(self, seq: str) -> List[int]:
ans = [0] * len(seq)
x = 0
for i, c in enumerate(seq):
if c == "(":
ans[i] = x & 1
x += 1
else:
x -= 1
ans[i] = x & 1
return ans
class Solution {
public int[] maxDepthAfterSplit(String seq) {
int n = seq.length();
int[] ans = new int[n];
for (int i = 0, x = 0; i < n; ++i) {
if (seq.charAt(i) == '(') {
ans[i] = x++ & 1;
} else {
ans[i] = --x & 1;
}
}
return ans;
}
}
class Solution {
public:
vector<int> maxDepthAfterSplit(string seq) {
int n = seq.size();
vector<int> ans(n);
for (int i = 0, x = 0; i < n; ++i) {
if (seq[i] == '(') {
ans[i] = x++ & 1;
} else {
ans[i] = --x & 1;
}
}
return ans;
}
};
func maxDepthAfterSplit(seq string) []int {
n := len(seq)
ans := make([]int, n)
for i, x := 0, 0; i < n; i++ {
if seq[i] == '(' {
ans[i] = x & 1
x++
} else {
x--
ans[i] = x & 1
}
}
return ans
}
function maxDepthAfterSplit(seq: string): number[] {
const n = seq.length;
const ans: number[] = new Array(n);
for (let i = 0, x = 0; i < n; ++i) {
if (seq[i] === '(') {
ans[i] = x++ & 1;
} else {
ans[i] = --x & 1;
}
}
return ans;
}