comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
Koko loves to eat bananas. There are n
piles of bananas, the ith
pile has piles[i]
bananas. The guards have gone and will come back in h
hours.
Koko can decide her bananas-per-hour eating speed of k
. Each hour, she chooses some pile of bananas and eats k
bananas from that pile. If the pile has less than k
bananas, she eats all of them instead and will not eat any more bananas during this hour.
Koko likes to eat slowly but still wants to finish eating all the bananas before the guards return.
Return the minimum integer k
such that she can eat all the bananas within h
hours.
Example 1:
Input: piles = [3,6,7,11], h = 8 Output: 4
Example 2:
Input: piles = [30,11,23,4,20], h = 5 Output: 30
Example 3:
Input: piles = [30,11,23,4,20], h = 6 Output: 23
Constraints:
1 <= piles.length <= 104
piles.length <= h <= 109
1 <= piles[i] <= 109
We notice that if Koko can eat all the bananas at a speed of
We define the left boundary of the binary search as
The time complexity is piles
respectively. The space complexity is
class Solution:
def minEatingSpeed(self, piles: List[int], h: int) -> int:
def check(k: int) -> bool:
return sum((x + k - 1) // k for x in piles) <= h
return 1 + bisect_left(range(1, max(piles) + 1), True, key=check)
class Solution {
public int minEatingSpeed(int[] piles, int h) {
int l = 1, r = (int) 1e9;
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
for (int x : piles) {
s += (x + mid - 1) / mid;
}
if (s <= h) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
class Solution {
public:
int minEatingSpeed(vector<int>& piles, int h) {
int l = 1, r = ranges::max(piles);
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
for (int x : piles) {
s += (x + mid - 1) / mid;
}
if (s <= h) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
func minEatingSpeed(piles []int, h int) int {
return 1 + sort.Search(slices.Max(piles), func(k int) bool {
k++
s := 0
for _, x := range piles {
s += (x + k - 1) / k
}
return s <= h
})
}
function minEatingSpeed(piles: number[], h: number): number {
let [l, r] = [1, Math.max(...piles)];
while (l < r) {
const mid = (l + r) >> 1;
const s = piles.map(x => Math.ceil(x / mid)).reduce((a, b) => a + b);
if (s <= h) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
impl Solution {
pub fn min_eating_speed(piles: Vec<i32>, h: i32) -> i32 {
let mut l = 1;
let mut r = *piles.iter().max().unwrap_or(&0);
while l < r {
let mid = (l + r) >> 1;
let mut s = 0;
for x in piles.iter() {
s += (x + mid - 1) / mid;
}
if s <= h {
r = mid;
} else {
l = mid + 1;
}
}
l
}
}
public class Solution {
public int MinEatingSpeed(int[] piles, int h) {
int l = 1, r = (int) 1e9;
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
foreach (int x in piles) {
s += (x + mid - 1) / mid;
}
if (s <= h) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}