Skip to content

Latest commit

 

History

History
401 lines (322 loc) · 10.4 KB

File metadata and controls

401 lines (322 loc) · 10.4 KB
comments difficulty edit_url tags
true
中等
贪心
数组
动态规划

English Version

题目描述

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

 

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

 

提示:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

解法

方法一:记忆化搜索

我们设计一个函数 $dfs(i, j)$,表示从第 $i$ 天开始,状态为 $j$ 时,能够获得的最大利润。其中 $j$ 的取值为 $0, 1$,分别表示当前不持有股票和持有股票。答案即为 $dfs(0, 0)$

函数 $dfs(i, j)$ 的执行逻辑如下:

如果 $i \geq n$,那么没有股票可以交易了,此时返回 $0$

否则,我们可以选择不交易,此时 $dfs(i, j) = dfs(i + 1, j)$。我们也可以进行股票交易,如果此时 $j \gt 0$,说明当前持有股票,可以卖出,此时 $dfs(i, j) = prices[i] + dfs(i + 1, 0) - fee$;如果此时 $j = 0$,说明当前不持有股票,可以买入,此时 $dfs(i, j) = -prices[i] + dfs(i + 1, 1)$。取最大值作为函数 $dfs(i, j)$ 的返回值。

答案为 $dfs(0, 0)$

为了避免重复计算,我们使用记忆化搜索的方法,用一个数组 $f$ 记录 $dfs(i, j)$ 的返回值,如果 $f[i][j]$ 不为 $-1$,说明已经计算过,直接返回 $f[i][j]$ 即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $prices$ 的长度。

Python3

class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        @cache
        def dfs(i: int, j: int) -> int:
            if i >= len(prices):
                return 0
            ans = dfs(i + 1, j)
            if j:
                ans = max(ans, prices[i] + dfs(i + 1, 0) - fee)
            else:
                ans = max(ans, -prices[i] + dfs(i + 1, 1))
            return ans

        return dfs(0, 0)

Java

class Solution {
    private Integer[][] f;
    private int[] prices;
    private int fee;

    public int maxProfit(int[] prices, int fee) {
        f = new Integer[prices.length][2];
        this.prices = prices;
        this.fee = fee;
        return dfs(0, 0);
    }

    private int dfs(int i, int j) {
        if (i >= prices.length) {
            return 0;
        }
        if (f[i][j] != null) {
            return f[i][j];
        }
        int ans = dfs(i + 1, j);
        if (j > 0) {
            ans = Math.max(ans, prices[i] + dfs(i + 1, 0) - fee);
        } else {
            ans = Math.max(ans, -prices[i] + dfs(i + 1, 1));
        }
        return f[i][j] = ans;
    }
}

C++

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        int f[n][2];
        memset(f, -1, sizeof(f));
        function<int(int, int)> dfs = [&](int i, int j) {
            if (i >= prices.size()) {
                return 0;
            }
            if (f[i][j] != -1) {
                return f[i][j];
            }
            int ans = dfs(i + 1, j);
            if (j) {
                ans = max(ans, prices[i] + dfs(i + 1, 0) - fee);
            } else {
                ans = max(ans, -prices[i] + dfs(i + 1, 1));
            }
            return f[i][j] = ans;
        };
        return dfs(0, 0);
    }
};

Go

func maxProfit(prices []int, fee int) int {
	n := len(prices)
	f := make([][2]int, n)
	for i := range f {
		f[i] = [2]int{-1, -1}
	}
	var dfs func(i, j int) int
	dfs = func(i, j int) int {
		if i >= n {
			return 0
		}
		if f[i][j] != -1 {
			return f[i][j]
		}
		ans := dfs(i+1, j)
		if j > 0 {
			ans = max(ans, prices[i]+dfs(i+1, 0)-fee)
		} else {
			ans = max(ans, -prices[i]+dfs(i+1, 1))
		}
		f[i][j] = ans
		return ans
	}
	return dfs(0, 0)
}

TypeScript

function maxProfit(prices: number[], fee: number): number {
    const n = prices.length;
    const f: number[][] = Array.from({ length: n }, () => [-1, -1]);
    const dfs = (i: number, j: number): number => {
        if (i >= n) {
            return 0;
        }
        if (f[i][j] !== -1) {
            return f[i][j];
        }
        let ans = dfs(i + 1, j);
        if (j) {
            ans = Math.max(ans, prices[i] + dfs(i + 1, 0) - fee);
        } else {
            ans = Math.max(ans, -prices[i] + dfs(i + 1, 1));
        }
        return (f[i][j] = ans);
    };
    return dfs(0, 0);
}

方法二:动态规划

我们定义 $f[i][j]$ 表示到第 $i$ 天,且状态为 $j$ 时,能够获得的最大利润。其中 $j$ 的取值为 $0, 1$,分别表示当前不持有股票和持有股票。初始时 $f[0][0] = 0$, $f[0][1] = -prices[0]$

$i \geq 1$ 时,如果当前不持有股票,那么 $f[i][0]$ 可以由 $f[i - 1][0]$$f[i - 1][1] + prices[i] - fee$ 转移得到,即 $f[i][0] = \max(f[i - 1][0], f[i - 1][1] + prices[i] - fee)$;如果当前持有股票,那么 $f[i][1]$ 可以由 $f[i - 1][1]$$f[i - 1][0] - prices[i]$ 转移得到,即 $f[i][1] = \max(f[i - 1][1], f[i - 1][0] - prices[i])$。最终答案为 $f[n - 1][0]$

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $prices$ 的长度。

我们注意到,状态 $f[i][]$ 的转移只与 $f[i - 1][]$$f[i - 1][]$ 有关,因此我们可以用两个变量 $f_0, f_1$ 代替数组 $f$,将空间复杂度优化到 $O(1)$

Python3

class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        n = len(prices)
        f = [[0] * 2 for _ in range(n)]
        f[0][1] = -prices[0]
        for i in range(1, n):
            f[i][0] = max(f[i - 1][0], f[i - 1][1] + prices[i] - fee)
            f[i][1] = max(f[i - 1][1], f[i - 1][0] - prices[i])
        return f[n - 1][0]

Java

class Solution {
    public int maxProfit(int[] prices, int fee) {
        int n = prices.length;
        int[][] f = new int[n][2];
        f[0][1] = -prices[0];
        for (int i = 1; i < n; ++i) {
            f[i][0] = Math.max(f[i - 1][0], f[i - 1][1] + prices[i] - fee);
            f[i][1] = Math.max(f[i - 1][1], f[i - 1][0] - prices[i]);
        }
        return f[n - 1][0];
    }
}

C++

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        int f[n][2];
        memset(f, 0, sizeof(f));
        f[0][1] = -prices[0];
        for (int i = 1; i < n; ++i) {
            f[i][0] = max(f[i - 1][0], f[i - 1][1] + prices[i] - fee);
            f[i][1] = max(f[i - 1][1], f[i - 1][0] - prices[i]);
        }
        return f[n - 1][0];
    }
};

Go

func maxProfit(prices []int, fee int) int {
	n := len(prices)
	f := make([][2]int, n)
	f[0][1] = -prices[0]
	for i := 1; i < n; i++ {
		f[i][0] = max(f[i-1][0], f[i-1][1]+prices[i]-fee)
		f[i][1] = max(f[i-1][1], f[i-1][0]-prices[i])
	}
	return f[n-1][0]
}

TypeScript

function maxProfit(prices: number[], fee: number): number {
    const n = prices.length;
    const f: number[][] = Array.from({ length: n }, () => [0, 0]);
    f[0][1] = -prices[0];
    for (let i = 1; i < n; ++i) {
        f[i][0] = Math.max(f[i - 1][0], f[i - 1][1] + prices[i] - fee);
        f[i][1] = Math.max(f[i - 1][1], f[i - 1][0] - prices[i]);
    }
    return f[n - 1][0];
}

方法三

Python3

class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        f0, f1 = 0, -prices[0]
        for x in prices[1:]:
            f0, f1 = max(f0, f1 + x - fee), max(f1, f0 - x)
        return f0

Java

class Solution {
    public int maxProfit(int[] prices, int fee) {
        int f0 = 0, f1 = -prices[0];
        for (int i = 1; i < prices.length; ++i) {
            int g0 = Math.max(f0, f1 + prices[i] - fee);
            f1 = Math.max(f1, f0 - prices[i]);
            f0 = g0;
        }
        return f0;
    }
}

C++

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int f0 = 0, f1 = -prices[0];
        for (int i = 1; i < prices.size(); ++i) {
            int g0 = max(f0, f1 + prices[i] - fee);
            f1 = max(f1, f0 - prices[i]);
            f0 = g0;
        }
        return f0;
    }
};

Go

func maxProfit(prices []int, fee int) int {
	f0, f1 := 0, -prices[0]
	for _, x := range prices[1:] {
		f0, f1 = max(f0, f1+x-fee), max(f1, f0-x)
	}
	return f0
}

TypeScript

function maxProfit(prices: number[], fee: number): number {
    const n = prices.length;
    let [f0, f1] = [0, -prices[0]];
    for (const x of prices.slice(1)) {
        [f0, f1] = [Math.max(f0, f1 + x - fee), Math.max(f1, f0 - x)];
    }
    return f0;
}