comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Easy |
|
Given an array of integers nums
which is sorted in ascending order, and an integer target
, write a function to search target
in nums
. If target
exists, then return its index. Otherwise, return -1
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [-1,0,3,5,9,12], target = 9 Output: 4 Explanation: 9 exists in nums and its index is 4
Example 2:
Input: nums = [-1,0,3,5,9,12], target = 2 Output: -1 Explanation: 2 does not exist in nums so return -1
Constraints:
1 <= nums.length <= 104
-104 < nums[i], target < 104
- All the integers in
nums
are unique. nums
is sorted in ascending order.
We define the left boundary
In each iteration, we calculate the middle position
- If
$\text{nums}[\text{mid}] \geq \text{target}$ , it means$\text{target}$ is in the left half, so we move the right boundary$r$ to$\text{mid}$ ; - Otherwise, it means
$\text{target}$ is in the right half, so we move the left boundary$l$ to$\text{mid}+1$ .
The loop ends when
The time complexity is
class Solution:
def search(self, nums: List[int], target: int) -> int:
l, r = 0, len(nums) - 1
while l < r:
mid = (l + r) >> 1
if nums[mid] >= target:
r = mid
else:
l = mid + 1
return l if nums[l] == target else -1
class Solution {
public int search(int[] nums, int target) {
int l = 0, r = nums.length - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return nums[l] == target ? l : -1;
}
}
class Solution {
public:
int search(vector<int>& nums, int target) {
int l = 0, r = nums.size() - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return nums[l] == target ? l : -1;
}
};
func search(nums []int, target int) int {
l, r := 0, len(nums)-1
for l < r {
mid := (l + r) >> 1
if nums[mid] >= target {
r = mid
} else {
l = mid + 1
}
}
if nums[l] == target {
return l
}
return -1
}
function search(nums: number[], target: number): number {
let [l, r] = [0, nums.length - 1];
while (l < r) {
const mid = (l + r) >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return nums[l] === target ? l : -1;
}
impl Solution {
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
let mut l: usize = 0;
let mut r: usize = nums.len() - 1;
while l < r {
let mid = (l + r) >> 1;
if nums[mid] >= target {
r = mid;
} else {
l = mid + 1;
}
}
if nums[l] == target {
l as i32
} else {
-1
}
}
}
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function (nums, target) {
let [l, r] = [0, nums.length - 1];
while (l < r) {
const mid = (l + r) >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return nums[l] === target ? l : -1;
};
public class Solution {
public int Search(int[] nums, int target) {
int l = 0, r = nums.Length - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return nums[l] == target ? l : -1;
}
}