Skip to content

Latest commit

 

History

History
627 lines (546 loc) · 15.8 KB

File metadata and controls

627 lines (546 loc) · 15.8 KB
comments difficulty edit_url tags
true
Medium
Binary Indexed Tree
Segment Tree
Array
Dynamic Programming

中文文档

Description

Given an integer array nums, return the number of longest increasing subsequences.

Notice that the sequence has to be strictly increasing.

 

Example 1:

Input: nums = [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequences are [1, 3, 4, 7] and [1, 3, 5, 7].

Example 2:

Input: nums = [2,2,2,2,2]
Output: 5
Explanation: The length of the longest increasing subsequence is 1, and there are 5 increasing subsequences of length 1, so output 5.

 

Constraints:

  • 1 <= nums.length <= 2000
  • -106 <= nums[i] <= 106

Solutions

Solution 1: Dynamic Programming

We define $f[i]$ as the length of the longest increasing subsequence ending with $nums[i]$, and $cnt[i]$ as the number of longest increasing subsequences ending with $nums[i]$. Initially, $f[i]=1$, $cnt[i]=1$. Also, we define $mx$ as the length of the longest increasing subsequence, and $ans$ as the number of longest increasing subsequences.

For each $nums[i]$, we enumerate all elements $nums[j]$ in $nums[0:i-1]$. If $nums[j] &lt; nums[i]$, then $nums[i]$ can be appended after $nums[j]$ to form a longer increasing subsequence. If $f[i] &lt; f[j] + 1$, it means the length of the longest increasing subsequence ending with $nums[i]$ has increased, so we need to update $f[i]=f[j]+1$ and $cnt[i]=cnt[j]$. If $f[i]=f[j]+1$, it means we have found a longest increasing subsequence with the same length as before, so we need to increase $cnt[i]$ by $cnt[j]$. Then, if $mx &lt; f[i]$, it means the length of the longest increasing subsequence has increased, so we need to update $mx=f[i]$ and $ans=cnt[i]$. If $mx=f[i]$, it means we have found a longest increasing subsequence with the same length as before, so we need to increase $ans$ by $cnt[i]$.

Finally, we return $ans$.

The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

Python3

class Solution:
    def findNumberOfLIS(self, nums: List[int]) -> int:
        n = len(nums)
        f = [1] * n
        cnt = [1] * n
        mx = 0
        for i in range(n):
            for j in range(i):
                if nums[j] < nums[i]:
                    if f[i] < f[j] + 1:
                        f[i] = f[j] + 1
                        cnt[i] = cnt[j]
                    elif f[i] == f[j] + 1:
                        cnt[i] += cnt[j]
            if mx < f[i]:
                mx = f[i]
                ans = cnt[i]
            elif mx == f[i]:
                ans += cnt[i]
        return ans

Java

class Solution {
    public int findNumberOfLIS(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        int[] cnt = new int[n];
        int mx = 0, ans = 0;
        for (int i = 0; i < n; ++i) {
            f[i] = 1;
            cnt[i] = 1;
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    if (f[i] < f[j] + 1) {
                        f[i] = f[j] + 1;
                        cnt[i] = cnt[j];
                    } else if (f[i] == f[j] + 1) {
                        cnt[i] += cnt[j];
                    }
                }
            }
            if (mx < f[i]) {
                mx = f[i];
                ans = cnt[i];
            } else if (mx == f[i]) {
                ans += cnt[i];
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int n = nums.size();
        int mx = 0, ans = 0;
        vector<int> f(n, 1);
        vector<int> cnt(n, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    if (f[i] < f[j] + 1) {
                        f[i] = f[j] + 1;
                        cnt[i] = cnt[j];
                    } else if (f[i] == f[j] + 1) {
                        cnt[i] += cnt[j];
                    }
                }
            }
            if (mx < f[i]) {
                mx = f[i];
                ans = cnt[i];
            } else if (mx == f[i]) {
                ans += cnt[i];
            }
        }
        return ans;
    }
};

Go

func findNumberOfLIS(nums []int) (ans int) {
	n, mx := len(nums), 0
	f := make([]int, n)
	cnt := make([]int, n)
	for i, x := range nums {
		for j, y := range nums[:i] {
			if y < x {
				if f[i] < f[j]+1 {
					f[i] = f[j] + 1
					cnt[i] = cnt[j]
				} else if f[i] == f[j]+1 {
					cnt[i] += cnt[j]
				}
			}
		}
		if mx < f[i] {
			mx = f[i]
			ans = cnt[i]
		} else if mx == f[i] {
			ans += cnt[i]
		}
	}
	return
}

TypeScript

function findNumberOfLIS(nums: number[]): number {
    const n = nums.length;
    let [ans, mx] = [0, 0];
    const f: number[] = Array(n).fill(1);
    const cnt: number[] = Array(n).fill(1);
    for (let i = 0; i < n; ++i) {
        for (let j = 0; j < i; ++j) {
            if (nums[j] < nums[i]) {
                if (f[i] < f[j] + 1) {
                    f[i] = f[j] + 1;
                    cnt[i] = cnt[j];
                } else if (f[i] === f[j] + 1) {
                    cnt[i] += cnt[j];
                }
            }
        }
        if (mx < f[i]) {
            mx = f[i];
            ans = cnt[i];
        } else if (mx === f[i]) {
            ans += cnt[i];
        }
    }
    return ans;
}

Rust

impl Solution {
    pub fn find_number_of_lis(nums: Vec<i32>) -> i32 {
        let n = nums.len();
        let mut ans = 0;
        let mut mx = 0;
        let mut f = vec![1; n];
        let mut cnt = vec![1; n];
        for i in 0..n {
            for j in 0..i {
                if nums[j] < nums[i] {
                    if f[i] < f[j] + 1 {
                        f[i] = f[j] + 1;
                        cnt[i] = cnt[j];
                    } else if f[i] == f[j] + 1 {
                        cnt[i] += cnt[j];
                    }
                }
            }
            if mx < f[i] {
                mx = f[i];
                ans = cnt[i];
            } else if mx == f[i] {
                ans += cnt[i];
            }
        }
        ans
    }
}

Solution 2: Binary Indexed Tree

We can use a binary indexed tree to maintain the length and count of the longest increasing subsequence in the prefix interval. We remove duplicates from the array $nums$ and sort it to get the array $arr$. Then we enumerate each element $x$ in $nums$, find the position $i$ of $x$ in the array $arr$ by binary search, then query the length and count of the longest increasing subsequence in $[1,i-1]$, denoted as $v$ and $cnt$, then update the length and count of the longest increasing subsequence in $[i]$ to $v+1$ and $\max(cnt,1)$. Finally, we query the length and count of the longest increasing subsequence in $[1,m]$, where $m$ is the length of the array $arr$, which is the answer.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

Python3

class BinaryIndexedTree:
    __slots__ = ["n", "c", "d"]

    def __init__(self, n):
        self.n = n
        self.c = [0] * (n + 1)
        self.d = [0] * (n + 1)

    def update(self, x, v, cnt):
        while x <= self.n:
            if self.c[x] < v:
                self.c[x] = v
                self.d[x] = cnt
            elif self.c[x] == v:
                self.d[x] += cnt
            x += x & -x

    def query(self, x):
        v = cnt = 0
        while x:
            if self.c[x] > v:
                v = self.c[x]
                cnt = self.d[x]
            elif self.c[x] == v:
                cnt += self.d[x]
            x -= x & -x
        return v, cnt


class Solution:
    def findNumberOfLIS(self, nums: List[int]) -> int:
        arr = sorted(set(nums))
        m = len(arr)
        tree = BinaryIndexedTree(m)
        for x in nums:
            i = bisect_left(arr, x) + 1
            v, cnt = tree.query(i - 1)
            tree.update(i, v + 1, max(cnt, 1))
        return tree.query(m)[1]

Java

class BinaryIndexedTree {
    private int n;
    private int[] c;
    private int[] d;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
        d = new int[n + 1];
    }

    public void update(int x, int v, int cnt) {
        while (x <= n) {
            if (c[x] < v) {
                c[x] = v;
                d[x] = cnt;
            } else if (c[x] == v) {
                d[x] += cnt;
            }
            x += x & -x;
        }
    }

    public int[] query(int x) {
        int v = 0, cnt = 0;
        while (x > 0) {
            if (c[x] > v) {
                v = c[x];
                cnt = d[x];
            } else if (c[x] == v) {
                cnt += d[x];
            }
            x -= x & -x;
        }
        return new int[] {v, cnt};
    }
}

public class Solution {
    public int findNumberOfLIS(int[] nums) {
        // int[] arr = Arrays.stream(nums).distinct().sorted().toArray();
        int[] arr = nums.clone();
        Arrays.sort(arr);
        int m = arr.length;
        BinaryIndexedTree tree = new BinaryIndexedTree(m);
        for (int x : nums) {
            int i = Arrays.binarySearch(arr, x) + 1;
            int[] t = tree.query(i - 1);
            int v = t[0];
            int cnt = t[1];
            tree.update(i, v + 1, Math.max(cnt, 1));
        }
        return tree.query(m)[1];
    }
}

C++

class BinaryIndexedTree {
private:
    int n;
    vector<int> c;
    vector<int> d;

public:
    BinaryIndexedTree(int n)
        : n(n)
        , c(n + 1, 0)
        , d(n + 1, 0) {}

    void update(int x, int v, int cnt) {
        while (x <= n) {
            if (c[x] < v) {
                c[x] = v;
                d[x] = cnt;
            } else if (c[x] == v) {
                d[x] += cnt;
            }
            x += x & -x;
        }
    }

    pair<int, int> query(int x) {
        int v = 0, cnt = 0;
        while (x > 0) {
            if (c[x] > v) {
                v = c[x];
                cnt = d[x];
            } else if (c[x] == v) {
                cnt += d[x];
            }
            x -= x & -x;
        }
        return {v, cnt};
    }
};

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        vector<int> arr = nums;
        sort(arr.begin(), arr.end());
        arr.erase(unique(arr.begin(), arr.end()), arr.end());
        int m = arr.size();
        BinaryIndexedTree tree(m);
        for (int x : nums) {
            auto it = lower_bound(arr.begin(), arr.end(), x);
            int i = distance(arr.begin(), it) + 1;
            auto [v, cnt] = tree.query(i - 1);
            tree.update(i, v + 1, max(cnt, 1));
        }
        return tree.query(m).second;
    }
};

Go

type BinaryIndexedTree struct {
	n int
	c []int
	d []int
}

func newBinaryIndexedTree(n int) BinaryIndexedTree {
	return BinaryIndexedTree{
		n: n,
		c: make([]int, n+1),
		d: make([]int, n+1),
	}
}

func (bit *BinaryIndexedTree) update(x, v, cnt int) {
	for x <= bit.n {
		if bit.c[x] < v {
			bit.c[x] = v
			bit.d[x] = cnt
		} else if bit.c[x] == v {
			bit.d[x] += cnt
		}
		x += x & -x
	}
}

func (bit *BinaryIndexedTree) query(x int) (int, int) {
	v, cnt := 0, 0
	for x > 0 {
		if bit.c[x] > v {
			v = bit.c[x]
			cnt = bit.d[x]
		} else if bit.c[x] == v {
			cnt += bit.d[x]
		}
		x -= x & -x
	}
	return v, cnt
}

func findNumberOfLIS(nums []int) int {
	arr := make([]int, len(nums))
	copy(arr, nums)
	sort.Ints(arr)
	m := len(arr)
	tree := newBinaryIndexedTree(m)
	for _, x := range nums {
		i := sort.SearchInts(arr, x) + 1
		v, cnt := tree.query(i - 1)
		tree.update(i, v+1, max(cnt, 1))
	}
	_, ans := tree.query(m)
	return ans
}

TypeScript

class BinaryIndexedTree {
    private n: number;
    private c: number[];
    private d: number[];

    constructor(n: number) {
        this.n = n;
        this.c = Array(n + 1).fill(0);
        this.d = Array(n + 1).fill(0);
    }

    update(x: number, v: number, cnt: number): void {
        while (x <= this.n) {
            if (this.c[x] < v) {
                this.c[x] = v;
                this.d[x] = cnt;
            } else if (this.c[x] === v) {
                this.d[x] += cnt;
            }
            x += x & -x;
        }
    }

    query(x: number): [number, number] {
        let v = 0;
        let cnt = 0;
        while (x > 0) {
            if (this.c[x] > v) {
                v = this.c[x];
                cnt = this.d[x];
            } else if (this.c[x] === v) {
                cnt += this.d[x];
            }
            x -= x & -x;
        }
        return [v, cnt];
    }
}

function findNumberOfLIS(nums: number[]): number {
    const arr: number[] = [...new Set(nums)].sort((a, b) => a - b);
    const m: number = arr.length;
    const tree: BinaryIndexedTree = new BinaryIndexedTree(m);
    const search = (x: number): number => {
        let l = 0,
            r = arr.length;
        while (l < r) {
            const mid = (l + r) >> 1;
            if (arr[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l + 1;
    };
    for (const x of nums) {
        const i: number = search(x);
        const [v, cnt]: [number, number] = tree.query(i - 1);
        tree.update(i, v + 1, Math.max(cnt, 1));
    }
    return tree.query(m)[1];
}

Rust

struct BinaryIndexedTree {
    n: usize,
    c: Vec<i32>,
    d: Vec<i32>,
}

impl BinaryIndexedTree {
    fn new(n: usize) -> BinaryIndexedTree {
        BinaryIndexedTree {
            n,
            c: vec![0; n + 1],
            d: vec![0; n + 1],
        }
    }

    fn update(&mut self, x: usize, v: i32, cnt: i32) {
        let mut x = x as usize;
        while x <= self.n {
            if self.c[x] < v {
                self.c[x] = v;
                self.d[x] = cnt;
            } else if self.c[x] == v {
                self.d[x] += cnt;
            }
            x += x & x.wrapping_neg();
        }
    }

    fn query(&self, mut x: usize) -> (i32, i32) {
        let (mut v, mut cnt) = (0, 0);
        while x > 0 {
            if self.c[x] > v {
                v = self.c[x];
                cnt = self.d[x];
            } else if self.c[x] == v {
                cnt += self.d[x];
            }
            x -= x & x.wrapping_neg();
        }
        (v, cnt)
    }
}

impl Solution {
    pub fn find_number_of_lis(nums: Vec<i32>) -> i32 {
        let mut arr: Vec<i32> = nums.iter().cloned().collect();
        arr.sort();
        let m = arr.len();
        let mut tree = BinaryIndexedTree::new(m);
        for x in nums.iter() {
            if let Ok(i) = arr.binary_search(x) {
                let (v, cnt) = tree.query(i);
                tree.update(i + 1, v + 1, cnt.max(1));
            }
        }
        let (_, ans) = tree.query(m);
        ans
    }
}