Skip to content

Latest commit

 

History

History
225 lines (196 loc) · 6.25 KB

README_EN.md

File metadata and controls

225 lines (196 loc) · 6.25 KB
comments difficulty edit_url tags
true
Hard
Array
Dynamic Programming

中文文档

Description

You are given an integer array coins (1-indexed) of length n and an integer maxJump. You can jump to any index i of the array coins if coins[i] != -1 and you have to pay coins[i] when you visit index i. In addition to that, if you are currently at index i, you can only jump to any index i + k where i + k <= n and k is a value in the range [1, maxJump].

You are initially positioned at index 1 (coins[1] is not -1). You want to find the path that reaches index n with the minimum cost.

Return an integer array of the indices that you will visit in order so that you can reach index n with the minimum cost. If there are multiple paths with the same cost, return the lexicographically smallest such path. If it is not possible to reach index n, return an empty array.

A path p1 = [Pa1, Pa2, ..., Pax] of length x is lexicographically smaller than p2 = [Pb1, Pb2, ..., Pbx] of length y, if and only if at the first j where Paj and Pbj differ, Paj < Pbj; when no such j exists, then x < y.

 

Example 1:

Input: coins = [1,2,4,-1,2], maxJump = 2
Output: [1,3,5]

Example 2:

Input: coins = [1,2,4,-1,2], maxJump = 1
Output: []

 

Constraints:

  • 1 <= coins.length <= 1000
  • -1 <= coins[i] <= 100
  • coins[1] != -1
  • 1 <= maxJump <= 100

Solutions

Solution 1

Python3

class Solution:
    def cheapestJump(self, coins: List[int], maxJump: int) -> List[int]:
        if coins[-1] == -1:
            return []
        n = len(coins)
        f = [inf] * n
        f[-1] = coins[-1]
        for i in range(n - 2, -1, -1):
            if coins[i] != -1:
                for j in range(i + 1, min(n, i + maxJump + 1)):
                    if f[i] > f[j] + coins[i]:
                        f[i] = f[j] + coins[i]
        if f[0] == inf:
            return []
        ans = []
        s = f[0]
        for i in range(n):
            if f[i] == s:
                s -= coins[i]
                ans.append(i + 1)
        return ans

Java

class Solution {
    public List<Integer> cheapestJump(int[] coins, int maxJump) {
        int n = coins.length;
        List<Integer> ans = new ArrayList<>();
        if (coins[n - 1] == -1) {
            return ans;
        }
        int[] f = new int[n];
        final int inf = 1 << 30;
        Arrays.fill(f, inf);
        f[n - 1] = coins[n - 1];
        for (int i = n - 2; i >= 0; --i) {
            if (coins[i] != -1) {
                for (int j = i + 1; j < Math.min(n, i + maxJump + 1); ++j) {
                    if (f[i] > f[j] + coins[i]) {
                        f[i] = f[j] + coins[i];
                    }
                }
            }
        }
        if (f[0] == inf) {
            return ans;
        }
        for (int i = 0, s = f[0]; i < n; ++i) {
            if (f[i] == s) {
                s -= coins[i];
                ans.add(i + 1);
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> cheapestJump(vector<int>& coins, int maxJump) {
        int n = coins.size();
        vector<int> ans;
        if (coins[n - 1] == -1) {
            return ans;
        }
        int f[n];
        const int inf = 1 << 30;
        f[n - 1] = coins[n - 1];
        for (int i = n - 2; ~i; --i) {
            f[i] = inf;
            if (coins[i] != -1) {
                for (int j = i + 1; j < min(n, i + maxJump + 1); ++j) {
                    f[i] = min(f[i], f[j] + coins[i]);
                }
            }
        }
        if (f[0] == inf) {
            return ans;
        }
        for (int i = 0, s = f[0]; i < n; ++i) {
            if (f[i] == s) {
                s -= coins[i];
                ans.push_back(i + 1);
            }
        }
        return ans;
    }
};

Go

func cheapestJump(coins []int, maxJump int) (ans []int) {
	n := len(coins)
	if coins[n-1] == -1 {
		return
	}
	f := make([]int, n)
	f[n-1] = coins[n-1]
	const inf = 1 << 30
	for i := n - 2; i >= 0; i-- {
		f[i] = inf
		if coins[i] != -1 {
			for j := i + 1; j < n && j < i+maxJump+1; j++ {
				if f[i] > f[j]+coins[i] {
					f[i] = f[j] + coins[i]
				}
			}
		}
	}
	if f[0] == inf {
		return
	}
	for i, s := 0, f[0]; i < n; i++ {
		if f[i] == s {
			s -= coins[i]
			ans = append(ans, i+1)
		}
	}
	return
}

TypeScript

function cheapestJump(coins: number[], maxJump: number): number[] {
    const n = coins.length;
    const ans: number[] = [];
    if (coins[n - 1] == -1) {
        return ans;
    }
    const inf = 1 << 30;
    const f: number[] = new Array(n).fill(inf);
    f[n - 1] = coins[n - 1];
    for (let i = n - 2; i >= 0; --i) {
        if (coins[i] !== -1) {
            for (let j = i + 1; j < Math.min(n, i + maxJump + 1); ++j) {
                f[i] = Math.min(f[i], f[j] + coins[i]);
            }
        }
    }
    if (f[0] === inf) {
        return ans;
    }
    for (let i = 0, s = f[0]; i < n; ++i) {
        if (f[i] == s) {
            s -= coins[i];
            ans.push(i + 1);
        }
    }
    return ans;
}