Skip to content

Latest commit

 

History

History
333 lines (274 loc) · 11.4 KB

File metadata and controls

333 lines (274 loc) · 11.4 KB
comments difficulty edit_url tags
true
中等
分治

English Version

题目描述

二进制矩阵中的所有元素不是 0 就是 1

给你两个四叉树,quadTree1quadTree2。其中 quadTree1 表示一个 n * n 二进制矩阵,而 quadTree2 表示另一个 n * n 二进制矩阵。

请你返回一个表示 n * n 二进制矩阵的四叉树,它是 quadTree1quadTree2 所表示的两个二进制矩阵进行 按位逻辑或运算 的结果。

注意,当 isLeafFalse 时,你可以把 True 或者 False 赋值给节点,两种值都会被判题机制 接受

四叉树数据结构中,每个内部节点只有四个子节点。此外,每个节点都有两个属性:

  • val:储存叶子结点所代表的区域的值。1 对应 True,0 对应 False
  • isLeaf: 当这个节点是一个叶子结点时为 True,如果它有 4 个子节点则为 False
class Node {
    public boolean val;
    public boolean isLeaf;
    public Node topLeft;
    public Node topRight;
    public Node bottomLeft;
    public Node bottomRight;
}

我们可以按以下步骤为二维区域构建四叉树:

  1. 如果当前网格的值相同(即,全为 0 或者全为 1),将 isLeaf 设为 True ,将 val 设为网格相应的值,并将四个子节点都设为 Null 然后停止。
  2. 如果当前网格的值不同,将 isLeaf 设为 False, 将 val 设为任意值,然后如下图所示,将当前网格划分为四个子网格。
  3. 使用适当的子网格递归每个子节点。

如果你想了解更多关于四叉树的内容,可以参考 百科

四叉树格式:

输出为使用层序遍历后四叉树的序列化形式,其中 null 表示路径终止符,其下面不存在节点。

它与二叉树的序列化非常相似。唯一的区别是节点以列表形式表示 [isLeaf, val]

如果 isLeaf 或者 val 的值为 True ,则表示它在列表 [isLeaf, val] 中的值为 1 ;如果 isLeaf 或者 val 的值为 False ,则表示值为 0

 

示例 1:

输入:quadTree1 = [[0,1],[1,1],[1,1],[1,0],[1,0]]
, quadTree2 = [[0,1],[1,1],[0,1],[1,1],[1,0],null,null,null,null,[1,0],[1,0],[1,1],[1,1]]
输出:[[0,0],[1,1],[1,1],[1,1],[1,0]]
解释:quadTree1 和 quadTree2 如上所示。由四叉树所表示的二进制矩阵也已经给出。
如果我们对这两个矩阵进行按位逻辑或运算,则可以得到下面的二进制矩阵,由一个作为结果的四叉树表示。
注意,我们展示的二进制矩阵仅仅是为了更好地说明题意,你无需构造二进制矩阵来获得结果四叉树。

示例 2:

输入:quadTree1 = [[1,0]]
, quadTree2 = [[1,0]]
输出:[[1,0]]
解释:两个数所表示的矩阵大小都为 1*1,值全为 0 
结果矩阵大小为 1*1,值全为 0 。

 

提示:

  • quadTree1quadTree2 都是符合题目要求的四叉树,每个都代表一个 n * n 的矩阵。
  • n == 2x ,其中 0 <= x <= 9.

解法

方法一

Python3

"""
# Definition for a QuadTree node.
class Node:
    def __init__(self, val, isLeaf, topLeft, topRight, bottomLeft, bottomRight):
        self.val = val
        self.isLeaf = isLeaf
        self.topLeft = topLeft
        self.topRight = topRight
        self.bottomLeft = bottomLeft
        self.bottomRight = bottomRight
"""


class Solution:
    def intersect(self, quadTree1: "Node", quadTree2: "Node") -> "Node":
        def dfs(t1, t2):
            if t1.isLeaf and t2.isLeaf:
                return Node(t1.val or t2.val, True)
            if t1.isLeaf:
                return t1 if t1.val else t2
            if t2.isLeaf:
                return t2 if t2.val else t1
            res = Node()
            res.topLeft = dfs(t1.topLeft, t2.topLeft)
            res.topRight = dfs(t1.topRight, t2.topRight)
            res.bottomLeft = dfs(t1.bottomLeft, t2.bottomLeft)
            res.bottomRight = dfs(t1.bottomRight, t2.bottomRight)
            isLeaf = (
                res.topLeft.isLeaf
                and res.topRight.isLeaf
                and res.bottomLeft.isLeaf
                and res.bottomRight.isLeaf
            )
            sameVal = (
                res.topLeft.val
                == res.topRight.val
                == res.bottomLeft.val
                == res.bottomRight.val
            )
            if isLeaf and sameVal:
                res = res.topLeft
            return res

        return dfs(quadTree1, quadTree2)

Java

/*
// Definition for a QuadTree node.
class Node {
    public boolean val;
    public boolean isLeaf;
    public Node topLeft;
    public Node topRight;
    public Node bottomLeft;
    public Node bottomRight;

    public Node() {}

    public Node(boolean _val,boolean _isLeaf,Node _topLeft,Node _topRight,Node _bottomLeft,Node
_bottomRight) { val = _val; isLeaf = _isLeaf; topLeft = _topLeft; topRight = _topRight; bottomLeft =
_bottomLeft; bottomRight = _bottomRight;
    }
};
*/

class Solution {
    public Node intersect(Node quadTree1, Node quadTree2) {
        return dfs(quadTree1, quadTree2);
    }

    private Node dfs(Node t1, Node t2) {
        if (t1.isLeaf && t2.isLeaf) {
            return new Node(t1.val || t2.val, true);
        }
        if (t1.isLeaf) {
            return t1.val ? t1 : t2;
        }
        if (t2.isLeaf) {
            return t2.val ? t2 : t1;
        }
        Node res = new Node();
        res.topLeft = dfs(t1.topLeft, t2.topLeft);
        res.topRight = dfs(t1.topRight, t2.topRight);
        res.bottomLeft = dfs(t1.bottomLeft, t2.bottomLeft);
        res.bottomRight = dfs(t1.bottomRight, t2.bottomRight);
        boolean isLeaf = res.topLeft.isLeaf && res.topRight.isLeaf && res.bottomLeft.isLeaf
            && res.bottomRight.isLeaf;
        boolean sameVal = res.topLeft.val == res.topRight.val
            && res.topRight.val == res.bottomLeft.val && res.bottomLeft.val == res.bottomRight.val;
        if (isLeaf && sameVal) {
            res = res.topLeft;
        }
        return res;
    }
}

C++

/*
// Definition for a QuadTree node.
class Node {
public:
    bool val;
    bool isLeaf;
    Node* topLeft;
    Node* topRight;
    Node* bottomLeft;
    Node* bottomRight;

    Node() {
        val = false;
        isLeaf = false;
        topLeft = NULL;
        topRight = NULL;
        bottomLeft = NULL;
        bottomRight = NULL;
    }

    Node(bool _val, bool _isLeaf) {
        val = _val;
        isLeaf = _isLeaf;
        topLeft = NULL;
        topRight = NULL;
        bottomLeft = NULL;
        bottomRight = NULL;
    }

    Node(bool _val, bool _isLeaf, Node* _topLeft, Node* _topRight, Node* _bottomLeft, Node* _bottomRight) {
        val = _val;
        isLeaf = _isLeaf;
        topLeft = _topLeft;
        topRight = _topRight;
        bottomLeft = _bottomLeft;
        bottomRight = _bottomRight;
    }
};
*/

class Solution {
public:
    Node* intersect(Node* quadTree1, Node* quadTree2) {
        return dfs(quadTree1, quadTree2);
    }

    Node* dfs(Node* t1, Node* t2) {
        if (t1->isLeaf && t2->isLeaf) return new Node(t1->val || t2->val, true);
        if (t1->isLeaf) return t1->val ? t1 : t2;
        if (t2->isLeaf) return t2->val ? t2 : t1;
        Node* res = new Node();
        res->topLeft = dfs(t1->topLeft, t2->topLeft);
        res->topRight = dfs(t1->topRight, t2->topRight);
        res->bottomLeft = dfs(t1->bottomLeft, t2->bottomLeft);
        res->bottomRight = dfs(t1->bottomRight, t2->bottomRight);
        bool isLeaf = res->topLeft->isLeaf && res->topRight->isLeaf && res->bottomLeft->isLeaf && res->bottomRight->isLeaf;
        bool sameVal = res->topLeft->val == res->topRight->val && res->topRight->val == res->bottomLeft->val && res->bottomLeft->val == res->bottomRight->val;
        if (isLeaf && sameVal) res = res->topLeft;
        return res;
    }
};

Go

/**
 * Definition for a QuadTree node.
 * type Node struct {
 *     Val bool
 *     IsLeaf bool
 *     TopLeft *Node
 *     TopRight *Node
 *     BottomLeft *Node
 *     BottomRight *Node
 * }
 */

func intersect(quadTree1 *Node, quadTree2 *Node) *Node {
	var dfs func(*Node, *Node) *Node
	dfs = func(t1, t2 *Node) *Node {
		if t1.IsLeaf && t2.IsLeaf {
			return &Node{Val: t1.Val || t2.Val, IsLeaf: true}
		}
		if t1.IsLeaf {
			if t1.Val {
				return t1
			}
			return t2
		}
		if t2.IsLeaf {
			if t2.Val {
				return t2
			}
			return t1
		}
		res := &Node{}
		res.TopLeft = dfs(t1.TopLeft, t2.TopLeft)
		res.TopRight = dfs(t1.TopRight, t2.TopRight)
		res.BottomLeft = dfs(t1.BottomLeft, t2.BottomLeft)
		res.BottomRight = dfs(t1.BottomRight, t2.BottomRight)
		isLeaf := res.TopLeft.IsLeaf && res.TopRight.IsLeaf && res.BottomLeft.IsLeaf && res.BottomRight.IsLeaf
		sameVal := res.TopLeft.Val == res.TopRight.Val && res.TopRight.Val == res.BottomLeft.Val && res.BottomLeft.Val == res.BottomRight.Val
		if isLeaf && sameVal {
			res = res.TopLeft
		}
		return res
	}

	return dfs(quadTree1, quadTree2)
}