comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
中等 |
|
给定 X-Y 平面上的一组点 points
,其中 points[i] = [xi, yi]
。这些点按顺序连成一个多边形。
如果该多边形为 凸 多边形(凸多边形的定义)则返回 true
,否则返回 false
。
你可以假设由给定点构成的多边形总是一个 简单的多边形(简单多边形的定义)。换句话说,我们要保证每个顶点处恰好是两条边的汇合点,并且这些边 互不相交 。
示例 1:
输入: points = [[0,0],[0,5],[5,5],[5,0]] 输出: true
示例 2:
输入: points = [[0,0],[0,10],[10,10],[10,0],[5,5]] 输出: false
提示:
3 <= points.length <= 104
points[i].length == 2
-104 <= xi, yi <= 104
- 所有点都 不同
假设当前连续的三个顶点分别为
遍历结束,如果没有发现不一致的情况,说明多边形是凸多边形 🔒。
时间复杂度
class Solution:
def isConvex(self, points: List[List[int]]) -> bool:
n = len(points)
pre = cur = 0
for i in range(n):
x1 = points[(i + 1) % n][0] - points[i][0]
y1 = points[(i + 1) % n][1] - points[i][1]
x2 = points[(i + 2) % n][0] - points[i][0]
y2 = points[(i + 2) % n][1] - points[i][1]
cur = x1 * y2 - x2 * y1
if cur != 0:
if cur * pre < 0:
return False
pre = cur
return True
class Solution {
public boolean isConvex(List<List<Integer>> points) {
int n = points.size();
long pre = 0, cur = 0;
for (int i = 0; i < n; ++i) {
var p1 = points.get(i);
var p2 = points.get((i + 1) % n);
var p3 = points.get((i + 2) % n);
int x1 = p2.get(0) - p1.get(0);
int y1 = p2.get(1) - p1.get(1);
int x2 = p3.get(0) - p1.get(0);
int y2 = p3.get(1) - p1.get(1);
cur = x1 * y2 - x2 * y1;
if (cur != 0) {
if (cur * pre < 0) {
return false;
}
pre = cur;
}
}
return true;
}
}
class Solution {
public:
bool isConvex(vector<vector<int>>& points) {
int n = points.size();
long long pre = 0, cur = 0;
for (int i = 0; i < n; ++i) {
int x1 = points[(i + 1) % n][0] - points[i][0];
int y1 = points[(i + 1) % n][1] - points[i][1];
int x2 = points[(i + 2) % n][0] - points[i][0];
int y2 = points[(i + 2) % n][1] - points[i][1];
cur = 1L * x1 * y2 - x2 * y1;
if (cur != 0) {
if (cur * pre < 0) {
return false;
}
pre = cur;
}
}
return true;
}
};
func isConvex(points [][]int) bool {
n := len(points)
pre, cur := 0, 0
for i := range points {
x1 := points[(i+1)%n][0] - points[i][0]
y1 := points[(i+1)%n][1] - points[i][1]
x2 := points[(i+2)%n][0] - points[i][0]
y2 := points[(i+2)%n][1] - points[i][1]
cur = x1*y2 - x2*y1
if cur != 0 {
if cur*pre < 0 {
return false
}
pre = cur
}
}
return true
}