comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
An integer array is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
- For example,
[1,3,5,7,9]
,[7,7,7,7]
, and[3,-1,-5,-9]
are arithmetic sequences.
Given an integer array nums
, return the number of arithmetic subarrays of nums
.
A subarray is a contiguous subsequence of the array.
Example 1:
Input: nums = [1,2,3,4] Output: 3 Explanation: We have 3 arithmetic slices in nums: [1, 2, 3], [2, 3, 4] and [1,2,3,4] itself.
Example 2:
Input: nums = [1] Output: 0
Constraints:
1 <= nums.length <= 5000
-1000 <= nums[i] <= 1000
We use
We iterate through the array nums
. For two adjacent elements
After the iteration, we can get the answer.
In the code implementation, we can also initialize
The time complexity is nums
.
Similar problems:
class Solution:
def numberOfArithmeticSlices(self, nums: List[int]) -> int:
ans = cnt = 0
d = 3000
for a, b in pairwise(nums):
if b - a == d:
cnt += 1
else:
d = b - a
cnt = 0
ans += cnt
return ans
class Solution {
public int numberOfArithmeticSlices(int[] nums) {
int ans = 0, cnt = 0;
int d = 3000;
for (int i = 0; i < nums.length - 1; ++i) {
if (nums[i + 1] - nums[i] == d) {
++cnt;
} else {
d = nums[i + 1] - nums[i];
cnt = 0;
}
ans += cnt;
}
return ans;
}
}
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& nums) {
int ans = 0, cnt = 0;
int d = 3000;
for (int i = 0; i < nums.size() - 1; ++i) {
if (nums[i + 1] - nums[i] == d) {
++cnt;
} else {
d = nums[i + 1] - nums[i];
cnt = 0;
}
ans += cnt;
}
return ans;
}
};
func numberOfArithmeticSlices(nums []int) (ans int) {
cnt, d := 0, 3000
for i, b := range nums[1:] {
a := nums[i]
if b-a == d {
cnt++
} else {
d = b - a
cnt = 0
}
ans += cnt
}
return
}
function numberOfArithmeticSlices(nums: number[]): number {
let ans = 0;
let cnt = 0;
let d = 3000;
for (let i = 0; i < nums.length - 1; ++i) {
const a = nums[i];
const b = nums[i + 1];
if (b - a == d) {
++cnt;
} else {
d = b - a;
cnt = 0;
}
ans += cnt;
}
return ans;
}