comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Easy |
|
Given an integer array nums
, move all 0
's to the end of it while maintaining the relative order of the non-zero elements.
Note that you must do this in-place without making a copy of the array.
Example 1:
Input: nums = [0,1,0,3,12] Output: [1,3,12,0,0]
Example 2:
Input: nums = [0] Output: [0]
Constraints:
1 <= nums.length <= 104
-231 <= nums[i] <= 231 - 1
Follow up: Could you minimize the total number of operations done?
We use two pointers
Next, we traverse
The time complexity is
class Solution:
def moveZeroes(self, nums: List[int]) -> None:
i = -1
for j, x in enumerate(nums):
if x:
i += 1
nums[i], nums[j] = nums[j], nums[i]
class Solution {
public void moveZeroes(int[] nums) {
int i = -1, n = nums.length;
for (int j = 0; j < n; ++j) {
if (nums[j] != 0) {
int t = nums[++i];
nums[i] = nums[j];
nums[j] = t;
}
}
}
}
class Solution {
public:
void moveZeroes(vector<int>& nums) {
int i = -1, n = nums.size();
for (int j = 0; j < n; ++j) {
if (nums[j]) {
swap(nums[++i], nums[j]);
}
}
}
};
func moveZeroes(nums []int) {
i := -1
for j, x := range nums {
if x != 0 {
i++
nums[i], nums[j] = nums[j], nums[i]
}
}
}
/**
Do not return anything, modify nums in-place instead.
*/
function moveZeroes(nums: number[]): void {
const n = nums.length;
let i = 0;
for (let j = 0; j < n; j++) {
if (nums[j]) {
if (j > i) {
[nums[i], nums[j]] = [nums[j], 0];
}
i++;
}
}
}
impl Solution {
pub fn move_zeroes(nums: &mut Vec<i32>) {
let mut i = 0;
for j in 0..nums.len() {
if nums[j] != 0 {
if j > i {
nums[i] = nums[j];
nums[j] = 0;
}
i += 1;
}
}
}
}
/**
* @param {number[]} nums
* @return {void} Do not return anything, modify nums in-place instead.
*/
var moveZeroes = function (nums) {
let i = -1;
for (let j = 0; j < nums.length; ++j) {
if (nums[j]) {
const t = nums[++i];
nums[i] = nums[j];
nums[j] = t;
}
}
};
void moveZeroes(int* nums, int numsSize) {
int i = 0;
for (int j = 0; j < numsSize; j++) {
if (nums[j] != 0) {
if (j > i) {
nums[i] = nums[j];
nums[j] = 0;
}
i++;
}
}
}