Skip to content

Latest commit

 

History

History
332 lines (280 loc) · 9.02 KB

File metadata and controls

332 lines (280 loc) · 9.02 KB
comments difficulty edit_url tags
true
困难
几何
数组
哈希表
数学

English Version

题目描述

给你一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点。求最多有多少个点在同一条直线上。

 

示例 1:

输入:points = [[1,1],[2,2],[3,3]]
输出:3

示例 2:

输入:points = [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出:4

 

提示:

  • 1 <= points.length <= 300
  • points[i].length == 2
  • -104 <= xi, yi <= 104
  • points 中的所有点 互不相同

解法

方法一:暴力枚举

我们可以枚举任意两个点 $(x_1, y_1), (x_2, y_2)$,把这两个点连成一条直线,那么此时这条直线上的点的个数就是 2,接下来我们再枚举其他点 $(x_3, y_3)$,判断它们是否在同一条直线上,如果在,那么直线上的点的个数就加 1,如果不在,那么直线上的点的个数不变。找出所有直线上的点的个数的最大值,即为答案。

时间复杂度 $O(n^3)$,空间复杂度 $O(1)$。其中 $n$ 是数组 points 的长度。

Python3

class Solution:
    def maxPoints(self, points: List[List[int]]) -> int:
        n = len(points)
        ans = 1
        for i in range(n):
            x1, y1 = points[i]
            for j in range(i + 1, n):
                x2, y2 = points[j]
                cnt = 2
                for k in range(j + 1, n):
                    x3, y3 = points[k]
                    a = (y2 - y1) * (x3 - x1)
                    b = (y3 - y1) * (x2 - x1)
                    cnt += a == b
                ans = max(ans, cnt)
        return ans

Java

class Solution {
    public int maxPoints(int[][] points) {
        int n = points.length;
        int ans = 1;
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int cnt = 2;
                for (int k = j + 1; k < n; ++k) {
                    int x3 = points[k][0], y3 = points[k][1];
                    int a = (y2 - y1) * (x3 - x1);
                    int b = (y3 - y1) * (x2 - x1);
                    if (a == b) {
                        ++cnt;
                    }
                }
                ans = Math.max(ans, cnt);
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxPoints(vector<vector<int>>& points) {
        int n = points.size();
        int ans = 1;
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int cnt = 2;
                for (int k = j + 1; k < n; ++k) {
                    int x3 = points[k][0], y3 = points[k][1];
                    int a = (y2 - y1) * (x3 - x1);
                    int b = (y3 - y1) * (x2 - x1);
                    cnt += a == b;
                }
                ans = max(ans, cnt);
            }
        }
        return ans;
    }
};

Go

func maxPoints(points [][]int) int {
	n := len(points)
	ans := 1
	for i := 0; i < n; i++ {
		x1, y1 := points[i][0], points[i][1]
		for j := i + 1; j < n; j++ {
			x2, y2 := points[j][0], points[j][1]
			cnt := 2
			for k := j + 1; k < n; k++ {
				x3, y3 := points[k][0], points[k][1]
				a := (y2 - y1) * (x3 - x1)
				b := (y3 - y1) * (x2 - x1)
				if a == b {
					cnt++
				}
			}
			if ans < cnt {
				ans = cnt
			}
		}
	}
	return ans
}

C#

public class Solution {
    public int MaxPoints(int[][] points) {
        int n = points.Length;
        int ans = 1;
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int cnt = 2;
                for (int k = j + 1; k < n; ++k) {
                    int x3 = points[k][0], y3 = points[k][1];
                    int a = (y2 - y1) * (x3 - x1);
                    int b = (y3 - y1) * (x2 - x1);
                    if (a == b) {
                        ++cnt;
                    }
                }
                if (ans < cnt) {
                    ans = cnt;
                }
            }
        }
        return ans;
    }
}

方法二:枚举 + 哈希表

我们可以枚举一个点 $(x_1, y_1)$,把其他所有点 $(x_2, y_2)$$(x_1, y_1)$ 连成的直线的斜率存入哈希表中,斜率相同的点在同一条直线上,哈希表的键为斜率,值为直线上的点的个数。找出哈希表中的最大值,即为答案。为了避免精度问题,我们可以将斜率 $\frac{y_2 - y_1}{x_2 - x_1}$ 进行约分,约分的方法是求最大公约数,然后分子分母同时除以最大公约数,将求得的分子分母作为哈希表的键。

时间复杂度 $O(n^2 \times \log m)$,空间复杂度 $O(n)$。其中 $n$$m$ 分别是数组 points 的长度和数组 points 所有横纵坐标差的最大值。

相似题目:

Python3

class Solution:
    def maxPoints(self, points: List[List[int]]) -> int:
        def gcd(a, b):
            return a if b == 0 else gcd(b, a % b)

        n = len(points)
        ans = 1
        for i in range(n):
            x1, y1 = points[i]
            cnt = Counter()
            for j in range(i + 1, n):
                x2, y2 = points[j]
                dx, dy = x2 - x1, y2 - y1
                g = gcd(dx, dy)
                k = (dx // g, dy // g)
                cnt[k] += 1
                ans = max(ans, cnt[k] + 1)
        return ans

Java

class Solution {
    public int maxPoints(int[][] points) {
        int n = points.length;
        int ans = 1;
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            Map<String, Integer> cnt = new HashMap<>();
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int dx = x2 - x1, dy = y2 - y1;
                int g = gcd(dx, dy);
                String k = (dx / g) + "." + (dy / g);
                cnt.put(k, cnt.getOrDefault(k, 0) + 1);
                ans = Math.max(ans, cnt.get(k) + 1);
            }
        }
        return ans;
    }

    private int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
}

C++

class Solution {
public:
    int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
    int maxPoints(vector<vector<int>>& points) {
        int n = points.size();
        int ans = 1;
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            unordered_map<string, int> cnt;
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int dx = x2 - x1, dy = y2 - y1;
                int g = gcd(dx, dy);
                string k = to_string(dx / g) + "." + to_string(dy / g);
                cnt[k]++;
                ans = max(ans, cnt[k] + 1);
            }
        }
        return ans;
    }
};

Go

func maxPoints(points [][]int) int {
	n := len(points)
	ans := 1
	type pair struct{ x, y int }
	for i := 0; i < n; i++ {
		x1, y1 := points[i][0], points[i][1]
		cnt := map[pair]int{}
		for j := i + 1; j < n; j++ {
			x2, y2 := points[j][0], points[j][1]
			dx, dy := x2-x1, y2-y1
			g := gcd(dx, dy)
			k := pair{dx / g, dy / g}
			cnt[k]++
			if ans < cnt[k]+1 {
				ans = cnt[k] + 1
			}
		}
	}
	return ans
}

func gcd(a, b int) int {
	if b == 0 {
		return a
	}
	return gcd(b, a%b)
}