comments | difficulty | edit_url | tags | |||||
---|---|---|---|---|---|---|---|---|
true |
中等 |
|
给定一个单链表的头节点 head
,其中的元素 按升序排序 ,将其转换为 平衡 二叉搜索树。
示例 1:
输入: head = [-10,-3,0,5,9] 输出: [0,-3,9,-10,null,5] 解释: 一个可能的答案是[0,-3,9,-10,null,5],它表示所示的高度平衡的二叉搜索树。
示例 2:
输入: head = [] 输出: []
提示:
head
中的节点数在[0, 2 * 104]
范围内-105 <= Node.val <= 105
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sortedListToBST(self, head: ListNode) -> TreeNode:
def buildBST(nums, start, end):
if start > end:
return None
mid = (start + end) >> 1
return TreeNode(
nums[mid], buildBST(nums, start, mid - 1), buildBST(nums, mid + 1, end)
)
nums = []
while head:
nums.append(head.val)
head = head.next
return buildBST(nums, 0, len(nums) - 1)
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode sortedListToBST(ListNode head) {
List<Integer> nums = new ArrayList<>();
for (; head != null; head = head.next) {
nums.add(head.val);
}
return buildBST(nums, 0, nums.size() - 1);
}
private TreeNode buildBST(List<Integer> nums, int start, int end) {
if (start > end) {
return null;
}
int mid = (start + end) >> 1;
TreeNode root = new TreeNode(nums.get(mid));
root.left = buildBST(nums, start, mid - 1);
root.right = buildBST(nums, mid + 1, end);
return root;
}
}
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* sortedListToBST(ListNode* head) {
vector<int> nums;
for (; head != nullptr; head = head->next) {
nums.push_back(head->val);
}
return buildBST(nums, 0, nums.size() - 1);
}
private:
TreeNode* buildBST(vector<int>& nums, int start, int end) {
if (start > end) {
return nullptr;
}
int mid = (start + end) / 2;
TreeNode* root = new TreeNode(nums[mid]);
root->left = buildBST(nums, start, mid - 1);
root->right = buildBST(nums, mid + 1, end);
return root;
}
};
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sortedListToBST(head *ListNode) *TreeNode {
nums := []int{}
for head != nil {
nums = append(nums, head.Val)
head = head.Next
}
return buildBST(nums, 0, len(nums)-1)
}
func buildBST(nums []int, start, end int) *TreeNode {
if start > end {
return nil
}
mid := (start + end) >> 1
return &TreeNode{
Val: nums[mid],
Left: buildBST(nums, start, mid-1),
Right: buildBST(nums, mid+1, end),
}
}
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
const find = (start: ListNode | null, end: ListNode | null) => {
let fast = start;
let slow = start;
while (fast !== end && fast.next !== end) {
fast = fast.next.next;
slow = slow.next;
}
return slow;
};
const build = (start: ListNode | null, end: ListNode | null) => {
if (start == end) {
return null;
}
const node = find(start, end);
return new TreeNode(node.val, build(start, node), build(node.next, end));
};
function sortedListToBST(head: ListNode | null): TreeNode | null {
return build(head, null);
}
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn build(vals: &Vec<i32>, start: usize, end: usize) -> Option<Rc<RefCell<TreeNode>>> {
if start == end {
return None;
}
let mid = (start + end) >> 1;
Some(Rc::new(RefCell::new(TreeNode {
val: vals[mid],
left: Self::build(vals, start, mid),
right: Self::build(vals, mid + 1, end),
})))
}
pub fn sorted_list_to_bst(head: Option<Box<ListNode>>) -> Option<Rc<RefCell<TreeNode>>> {
let mut vals = Vec::new();
let mut cur = &head;
while let Some(node) = cur {
vals.push(node.val);
cur = &node.next;
}
Self::build(&vals, 0, vals.len())
}
}
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {ListNode} head
* @return {TreeNode}
*/
var sortedListToBST = function (head) {
const buildBST = (nums, start, end) => {
if (start > end) {
return null;
}
const mid = (start + end) >> 1;
const root = new TreeNode(nums[mid]);
root.left = buildBST(nums, start, mid - 1);
root.right = buildBST(nums, mid + 1, end);
return root;
};
const nums = new Array();
for (; head != null; head = head.next) {
nums.push(head.val);
}
return buildBST(nums, 0, nums.length - 1);
};
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
struct ListNode* find(struct ListNode* start, struct ListNode* end) {
struct ListNode* fast = start;
struct ListNode* slow = start;
while (fast != end && fast->next != end) {
fast = fast->next->next;
slow = slow->next;
}
return slow;
}
struct TreeNode* bulid(struct ListNode* start, struct ListNode* end) {
if (start == end) {
return NULL;
}
struct ListNode* node = find(start, end);
struct TreeNode* ans = malloc(sizeof(struct TreeNode));
ans->val = node->val;
ans->left = bulid(start, node);
ans->right = bulid(node->next, end);
return ans;
}
struct TreeNode* sortedListToBST(struct ListNode* head) {
return bulid(head, NULL);
}