Skip to content

Latest commit

 

History

History
714 lines (610 loc) · 18.2 KB

File metadata and controls

714 lines (610 loc) · 18.2 KB
comments difficulty edit_url tags
true
中等
字符串
动态规划

English Version

题目描述

给定三个字符串 s1s2s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。

两个字符串 st 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串

  • s = s1 + s2 + ... + sn
  • t = t1 + t2 + ... + tm
  • |n - m| <= 1
  • 交错s1 + t1 + s2 + t2 + s3 + t3 + ... 或者 t1 + s1 + t2 + s2 + t3 + s3 + ...

注意:a + b 意味着字符串 ab 连接。

 

示例 1:

输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
输出:true

示例 2:

输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
输出:false

示例 3:

输入:s1 = "", s2 = "", s3 = ""
输出:true

 

提示:

  • 0 <= s1.length, s2.length <= 100
  • 0 <= s3.length <= 200
  • s1s2、和 s3 都由小写英文字母组成

 

进阶:您能否仅使用 O(s2.length) 额外的内存空间来解决它?

解法

方法一:记忆化搜索

我们记字符串 $s_1$ 的长度为 $m$,字符串 $s_2$ 的长度为 $n$,如果 $m + n \neq |s_3|$,那么 $s_3$ 一定不是 $s_1$$s_2$ 的交错字符串,返回 false

接下来,我们设计一个函数 $dfs(i, j)$,表示从 $s_1$ 的第 $i$ 个字符和 $s_2$ 的第 $j$ 个字符开始,能否交错组成 $s_3$ 的剩余部分。那么答案就是 $dfs(0, 0)$

函数 $dfs(i, j)$ 的计算过程如下:

如果 $i \geq m$ 并且 $j \geq n$,那么说明 $s_1$$s_2$ 都已经遍历完毕,返回 true

如果 $i &lt; m$ 并且 $s_1[i] = s_3[i + j]$,那么说明 $s_1[i]$ 这个字符是 $s_3[i + j]$ 中的一部分,因此递归地调用 $dfs(i + 1, j)$ 判断 $s_1$ 的下一个字符能否和 $s_2$ 的当前字符匹配,如果能匹配成功,就返回 true

同理,如果 $j &lt; n$ 并且 $s_2[j] = s_3[i + j]$,那么说明 $s_2[j]$ 这个字符是 $s_3[i + j]$ 中的一部分,因此递归地调用 $dfs(i, j + 1)$ 判断 $s_2$ 的下一个字符能否和 $s_1$ 的当前字符匹配,如果能匹配成功,就返回 true

否则,返回 false

为了避免重复计算,我们可以使用记忆化搜索。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是字符串 $s_1$$s_2$ 的长度。

Python3

class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        @cache
        def dfs(i: int, j: int) -> bool:
            if i >= m and j >= n:
                return True
            k = i + j
            if i < m and s1[i] == s3[k] and dfs(i + 1, j):
                return True
            if j < n and s2[j] == s3[k] and dfs(i, j + 1):
                return True
            return False

        m, n = len(s1), len(s2)
        if m + n != len(s3):
            return False
        return dfs(0, 0)

Java

class Solution {
    private Map<List<Integer>, Boolean> f = new HashMap<>();
    private String s1;
    private String s2;
    private String s3;
    private int m;
    private int n;

    public boolean isInterleave(String s1, String s2, String s3) {
        m = s1.length();
        n = s2.length();
        if (m + n != s3.length()) {
            return false;
        }
        this.s1 = s1;
        this.s2 = s2;
        this.s3 = s3;
        return dfs(0, 0);
    }

    private boolean dfs(int i, int j) {
        if (i >= m && j >= n) {
            return true;
        }
        var key = List.of(i, j);
        if (f.containsKey(key)) {
            return f.get(key);
        }
        int k = i + j;
        boolean ans = false;
        if (i < m && s1.charAt(i) == s3.charAt(k) && dfs(i + 1, j)) {
            ans = true;
        }
        if (!ans && j < n && s2.charAt(j) == s3.charAt(k) && dfs(i, j + 1)) {
            ans = true;
        }
        f.put(key, ans);
        return ans;
    }
}

C++

class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.size(), n = s2.size();
        if (m + n != s3.size()) {
            return false;
        }
        vector<vector<int>> f(m + 1, vector<int>(n + 1, -1));
        function<bool(int, int)> dfs = [&](int i, int j) {
            if (i >= m && j >= n) {
                return true;
            }
            if (f[i][j] != -1) {
                return f[i][j] == 1;
            }
            f[i][j] = 0;
            int k = i + j;
            if (i < m && s1[i] == s3[k] && dfs(i + 1, j)) {
                f[i][j] = 1;
            }
            if (!f[i][j] && j < n && s2[j] == s3[k] && dfs(i, j + 1)) {
                f[i][j] = 1;
            }
            return f[i][j] == 1;
        };
        return dfs(0, 0);
    }
};

Go

func isInterleave(s1 string, s2 string, s3 string) bool {
	m, n := len(s1), len(s2)
	if m+n != len(s3) {
		return false
	}

	f := map[int]bool{}
	var dfs func(int, int) bool
	dfs = func(i, j int) bool {
		if i >= m && j >= n {
			return true
		}
		if v, ok := f[i*200+j]; ok {
			return v
		}
		k := i + j
		f[i*200+j] = (i < m && s1[i] == s3[k] && dfs(i+1, j)) || (j < n && s2[j] == s3[k] && dfs(i, j+1))
		return f[i*200+j]
	}
	return dfs(0, 0)
}

TypeScript

function isInterleave(s1: string, s2: string, s3: string): boolean {
    const m = s1.length;
    const n = s2.length;
    if (m + n !== s3.length) {
        return false;
    }
    const f: number[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
    const dfs = (i: number, j: number): boolean => {
        if (i >= m && j >= n) {
            return true;
        }
        if (f[i][j]) {
            return f[i][j] === 1;
        }
        f[i][j] = -1;
        if (i < m && s1[i] === s3[i + j] && dfs(i + 1, j)) {
            f[i][j] = 1;
        }
        if (f[i][j] === -1 && j < n && s2[j] === s3[i + j] && dfs(i, j + 1)) {
            f[i][j] = 1;
        }
        return f[i][j] === 1;
    };
    return dfs(0, 0);
}

Rust

impl Solution {
    #[allow(dead_code)]
    pub fn is_interleave(s1: String, s2: String, s3: String) -> bool {
        let n = s1.len();
        let m = s2.len();

        if s1.len() + s2.len() != s3.len() {
            return false;
        }

        let mut record = vec![vec![-1; m + 1]; n + 1];

        Self::dfs(
            &mut record,
            n,
            m,
            0,
            0,
            &s1.chars().collect(),
            &s2.chars().collect(),
            &s3.chars().collect(),
        )
    }

    #[allow(dead_code)]
    fn dfs(
        record: &mut Vec<Vec<i32>>,
        n: usize,
        m: usize,
        i: usize,
        j: usize,
        s1: &Vec<char>,
        s2: &Vec<char>,
        s3: &Vec<char>,
    ) -> bool {
        if i >= n && j >= m {
            return true;
        }

        if record[i][j] != -1 {
            return record[i][j] == 1;
        }

        // Set the initial value
        record[i][j] = 0;
        let k = i + j;

        // Let's try `s1` first
        if i < n && s1[i] == s3[k] && Self::dfs(record, n, m, i + 1, j, s1, s2, s3) {
            record[i][j] = 1;
        }

        // If the first approach does not succeed, let's then try `s2`
        if record[i][j] == 0
            && j < m
            && s2[j] == s3[k]
            && Self::dfs(record, n, m, i, j + 1, s1, s2, s3)
        {
            record[i][j] = 1;
        }

        record[i][j] == 1
    }
}

C#

public class Solution {
    private int m;
    private int n;
    private string s1;
    private string s2;
    private string s3;
    private int[,] f;

    public bool IsInterleave(string s1, string s2, string s3) {
        m = s1.Length;
        n = s2.Length;
        if (m + n != s3.Length) {
            return false;
        }
        this.s1 = s1;
        this.s2 = s2;
        this.s3 = s3;
        f = new int[m + 1, n + 1];
        return dfs(0, 0);
    }

    private bool dfs(int i, int j) {
        if (i >= m && j >= n) {
            return true;
        }
        if (f[i, j] != 0) {
            return f[i, j] == 1;
        }
        f[i, j] = -1;
        if (i < m && s1[i] == s3[i + j] && dfs(i + 1, j)) {
            f[i, j] = 1;
        }
        if (f[i, j] == -1 && j < n && s2[j] == s3[i + j] && dfs(i, j + 1)) {
            f[i, j] = 1;
        }
        return f[i, j] == 1;
    }
}

方法二:动态规划

我们可以将方法一中的记忆化搜索转化为动态规划。

定义 $f[i][j]$ 表示字符串 $s_1$ 的前 $i$ 个字符和字符串 $s_2$ 的前 $j$ 个字符是否能交错组成字符串 $s_3$ 的前 $i + j$ 个字符。在进行状态转移时,我们可以考虑当前字符是由 $s_1$ 的最后一个字符还是 $s_2$ 的最后一个字符得到的,因此有状态转移方程:

$$ f[i][j] = \begin{cases} f[i - 1][j] & \text{if } s_1[i - 1] = s_3[i + j - 1] \\ \text{or } f[i][j - 1] & \text{if } s_2[j - 1] = s_3[i + j - 1] \\ \text{false} & \text{otherwise} \end{cases} $$

其中 $f[0][0] = \text{true}$ 表示空串是两个空串的交错字符串。

答案即为 $f[m][n]$

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是字符串 $s_1$$s_2$ 的长度。

Python3

class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        m, n = len(s1), len(s2)
        if m + n != len(s3):
            return False
        f = [[False] * (n + 1) for _ in range(m + 1)]
        f[0][0] = True
        for i in range(m + 1):
            for j in range(n + 1):
                k = i + j - 1
                if i and s1[i - 1] == s3[k]:
                    f[i][j] = f[i - 1][j]
                if j and s2[j - 1] == s3[k]:
                    f[i][j] |= f[i][j - 1]
        return f[m][n]

Java

class Solution {
    public boolean isInterleave(String s1, String s2, String s3) {
        int m = s1.length(), n = s2.length();
        if (m + n != s3.length()) {
            return false;
        }
        boolean[][] f = new boolean[m + 1][n + 1];
        f[0][0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0 && s1.charAt(i - 1) == s3.charAt(k)) {
                    f[i][j] = f[i - 1][j];
                }
                if (j > 0 && s2.charAt(j - 1) == s3.charAt(k)) {
                    f[i][j] |= f[i][j - 1];
                }
            }
        }
        return f[m][n];
    }
}

C++

class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.size(), n = s2.size();
        if (m + n != s3.size()) {
            return false;
        }
        bool f[m + 1][n + 1];
        memset(f, false, sizeof(f));
        f[0][0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0 && s1[i - 1] == s3[k]) {
                    f[i][j] = f[i - 1][j];
                }
                if (j > 0 && s2[j - 1] == s3[k]) {
                    f[i][j] |= f[i][j - 1];
                }
            }
        }
        return f[m][n];
    }
};

Go

func isInterleave(s1 string, s2 string, s3 string) bool {
	m, n := len(s1), len(s2)
	if m+n != len(s3) {
		return false
	}
	f := make([][]bool, m+1)
	for i := range f {
		f[i] = make([]bool, n+1)
	}
	f[0][0] = true
	for i := 0; i <= m; i++ {
		for j := 0; j <= n; j++ {
			k := i + j - 1
			if i > 0 && s1[i-1] == s3[k] {
				f[i][j] = f[i-1][j]
			}
			if j > 0 && s2[j-1] == s3[k] {
				f[i][j] = (f[i][j] || f[i][j-1])
			}
		}
	}
	return f[m][n]
}

TypeScript

function isInterleave(s1: string, s2: string, s3: string): boolean {
    const m = s1.length;
    const n = s2.length;
    if (m + n !== s3.length) {
        return false;
    }
    const f: boolean[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(false));
    f[0][0] = true;
    for (let i = 0; i <= m; ++i) {
        for (let j = 0; j <= n; ++j) {
            const k = i + j - 1;
            if (i > 0 && s1[i - 1] === s3[k]) {
                f[i][j] = f[i - 1][j];
            }
            if (j > 0 && s2[j - 1] === s3[k]) {
                f[i][j] = f[i][j] || f[i][j - 1];
            }
        }
    }
    return f[m][n];
}

C#

public class Solution {
    public bool IsInterleave(string s1, string s2, string s3) {
        int m = s1.Length, n = s2.Length;
        if (m + n != s3.Length) {
            return false;
        }
        bool[,] f = new bool[m + 1, n + 1];
        f[0, 0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0 && s1[i - 1] == s3[k]) {
                    f[i, j] = f[i - 1, j];
                }
                if (j > 0 && s2[j - 1] == s3[k]) {
                    f[i, j] |= f[i, j - 1];
                }
            }
        }
        return f[m, n];
    }
}

我们注意到,状态 $f[i][j]$ 只和状态 $f[i - 1][j]$、$f[i][j - 1]$、$f[i - 1][j - 1]$ 有关,因此我们可以使用滚动数组优化空间复杂度,将空间复杂度优化到 $O(n)$

Python3

class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        m, n = len(s1), len(s2)
        if m + n != len(s3):
            return False
        f = [True] + [False] * n
        for i in range(m + 1):
            for j in range(n + 1):
                k = i + j - 1
                if i:
                    f[j] &= s1[i - 1] == s3[k]
                if j:
                    f[j] |= f[j - 1] and s2[j - 1] == s3[k]
        return f[n]

Java

class Solution {
    public boolean isInterleave(String s1, String s2, String s3) {
        int m = s1.length(), n = s2.length();
        if (m + n != s3.length()) {
            return false;
        }
        boolean[] f = new boolean[n + 1];
        f[0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0) {
                    f[j] &= s1.charAt(i - 1) == s3.charAt(k);
                }
                if (j > 0) {
                    f[j] |= (f[j - 1] & s2.charAt(j - 1) == s3.charAt(k));
                }
            }
        }
        return f[n];
    }
}

C++

class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.size(), n = s2.size();
        if (m + n != s3.size()) {
            return false;
        }
        bool f[n + 1];
        memset(f, false, sizeof(f));
        f[0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i) {
                    f[j] &= s1[i - 1] == s3[k];
                }
                if (j) {
                    f[j] |= (s2[j - 1] == s3[k] && f[j - 1]);
                }
            }
        }
        return f[n];
    }
};

Go

func isInterleave(s1 string, s2 string, s3 string) bool {
	m, n := len(s1), len(s2)
	if m+n != len(s3) {
		return false
	}
	f := make([]bool, n+1)
	f[0] = true
	for i := 0; i <= m; i++ {
		for j := 0; j <= n; j++ {
			k := i + j - 1
			if i > 0 {
				f[j] = (f[j] && s1[i-1] == s3[k])
			}
			if j > 0 {
				f[j] = (f[j] || (s2[j-1] == s3[k] && f[j-1]))
			}
		}
	}
	return f[n]
}

TypeScript

function isInterleave(s1: string, s2: string, s3: string): boolean {
    const m = s1.length;
    const n = s2.length;
    if (m + n !== s3.length) {
        return false;
    }
    const f: boolean[] = new Array(n + 1).fill(false);
    f[0] = true;
    for (let i = 0; i <= m; ++i) {
        for (let j = 0; j <= n; ++j) {
            const k = i + j - 1;
            if (i) {
                f[j] = f[j] && s1[i - 1] === s3[k];
            }
            if (j) {
                f[j] = f[j] || (f[j - 1] && s2[j - 1] === s3[k]);
            }
        }
    }
    return f[n];
}

C#

public class Solution {
    public bool IsInterleave(string s1, string s2, string s3) {
        int m = s1.Length, n = s2.Length;
        if (m + n != s3.Length) {
            return false;
        }
        bool[] f = new bool[n + 1];
        f[0] = true;
        for (int i = 0; i <= m; ++i) {
            for (int j = 0; j <= n; ++j) {
                int k = i + j - 1;
                if (i > 0) {
                    f[j] &= s1[i - 1] == s3[k];
                }
                if (j > 0) {
                    f[j] |= (f[j - 1] & s2[j - 1] == s3[k]);
                }
            }
        }
        return f[n];
    }
}