comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u')
Constraints:
0 <= word1.length, word2.length <= 500
word1
andword2
consist of lowercase English letters.
We define
We consider
- If
$word1[i - 1] = word2[j - 1]$ , then we only need to consider the minimum number of operations to convert$word1$ of length$i - 1$ to$word2$ of length$j - 1$ , so$f[i][j] = f[i - 1][j - 1]$ ; - Otherwise, we can consider insert, delete, and replace operations, then
$f[i][j] = \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1$ .
Finally, we can get the state transition equation:
Finally, we return
The time complexity is
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
f = [[0] * (n + 1) for _ in range(m + 1)]
for j in range(1, n + 1):
f[0][j] = j
for i, a in enumerate(word1, 1):
f[i][0] = i
for j, b in enumerate(word2, 1):
if a == b:
f[i][j] = f[i - 1][j - 1]
else:
f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
return f[m][n]
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] f = new int[m + 1][n + 1];
for (int j = 1; j <= n; ++j) {
f[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
f[i][0] = i;
for (int j = 1; j <= n; ++j) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = Math.min(f[i - 1][j], Math.min(f[i][j - 1], f[i - 1][j - 1])) + 1;
}
}
}
return f[m][n];
}
}
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
int f[m + 1][n + 1];
for (int j = 0; j <= n; ++j) {
f[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
f[i][0] = i;
for (int j = 1; j <= n; ++j) {
if (word1[i - 1] == word2[j - 1]) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = min({f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]}) + 1;
}
}
}
return f[m][n];
}
};
func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
}
for j := 1; j <= n; j++ {
f[0][j] = j
}
for i := 1; i <= m; i++ {
f[i][0] = i
for j := 1; j <= n; j++ {
if word1[i-1] == word2[j-1] {
f[i][j] = f[i-1][j-1]
} else {
f[i][j] = min(f[i-1][j], min(f[i][j-1], f[i-1][j-1])) + 1
}
}
}
return f[m][n]
}
function minDistance(word1: string, word2: string): number {
const m = word1.length;
const n = word2.length;
const f: number[][] = Array(m + 1)
.fill(0)
.map(() => Array(n + 1).fill(0));
for (let j = 1; j <= n; ++j) {
f[0][j] = j;
}
for (let i = 1; i <= m; ++i) {
f[i][0] = i;
for (let j = 1; j <= n; ++j) {
if (word1[i - 1] === word2[j - 1]) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
}
}
}
return f[m][n];
}
/**
* @param {string} word1
* @param {string} word2
* @return {number}
*/
var minDistance = function (word1, word2) {
const m = word1.length;
const n = word2.length;
const f = Array(m + 1)
.fill(0)
.map(() => Array(n + 1).fill(0));
for (let j = 1; j <= n; ++j) {
f[0][j] = j;
}
for (let i = 1; i <= m; ++i) {
f[i][0] = i;
for (let j = 1; j <= n; ++j) {
if (word1[i - 1] === word2[j - 1]) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
}
}
}
return f[m][n];
};