forked from joemehr/MachineLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnCostFunction.m
108 lines (83 loc) · 4.03 KB
/
nnCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function [J grad] = nnCostFunction(neuralNetworkParameters, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(neuralNetworkParameters, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% neuralNetworkParameters and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape neuralNetworkParameters back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(neuralNetworkParameters(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(neuralNetworkParameters((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
numberOfTrainingExamples = size(X, 1);
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in the main file's output to console.
% X = 5000 x 400 matrix
X = [ones(numberOfTrainingExamples, 1) X];
% Now X = 5000 x 401 matrix
a1 = X; % a1 = 5000 x 401 matrix
z2 = a1 * Theta1';
a2 = sigmoid(z2);
a2 = [ones(numberOfTrainingExamples, 1) a2];
a3 = sigmoid(a2 * Theta2');
ry = eye(num_labels)(y, :);
cost = ry .* log(a3) + (1 - ry) .* log(1 - a3);
J = -sum( sum(cost, 2) ) / numberOfTrainingExamples;
reg = sum( sum(Theta1(:, 2:end).^2) ) + sum( sum(Theta2(: , 2:end).^2));
J = J + lambda / (2 * numberOfTrainingExamples) * reg;
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
G1 = zeros( size(Theta1) );
G2 = zeros( size(Theta2) );
for i = 1:numberOfTrainingExamples,
ra1 = X(i, :)';
rz2 = Theta1 * ra1;
ra2 = sigmoid(rz2);
ra2 = [1; ra2];
rz3 = Theta2 * ra2;
ra3 = sigmoid(rz3);
err3 = ra3 - ry(i, :)';
err2 = (Theta2' * err3)(2:end, 1) .* sigmoidGradient(rz2);
G1 = G1 + err2 * ra1';
G2 = G2 + err3 * ra2';
end
Theta1_grad = G1 / numberOfTrainingExamples + lambda * [zeros(hidden_layer_size, 1) Theta1(:, 2:end)] / numberOfTrainingExamples;
Theta2_grad = G2 / numberOfTrainingExamples + lambda * [zeros(num_labels, 1) Theta2(:, 2:end)] / numberOfTrainingExamples;
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end